3,332 research outputs found

    Microrheology of colloidal dispersions: Shape matters

    Get PDF
    We consider a “probe” particle translating at constant velocity through an otherwise quiescent dispersion of colloidal “bath” particles, as a model for particle-tracking microrheology experiments in the active (nonlinear) regime. The probe is a body of revolution with major and minor semiaxes a and b, respectively, and the bath particles are spheres of radii b. The probe's shape is such that when its major or minor axis is the axis of revolution the excluded-volume, or contact, surface between the probe and a bath particle is a prolate or oblate spheroid, respectively. The moving probe drives the microstructure of the dispersion out of equilibrium; counteracting this is the Brownian diffusion of the bath particles. For a prolate or oblate probe translating along its symmetry axis, we calculate the nonequilibrium microstructure to first order in the volume fraction of bath particles and over the entire range of the Péclet number (Pe), neglecting hydrodynamic interactions. Here, Pe is defined as the non-dimensional velocity of the probe. The microstructure is employed to calculate the average external force on the probe, from which one can infer a “microviscosity” of the dispersion via Stokes drag law. The microviscosity is computed as a function of the aspect ratio of the probe, â=a/b, thereby delineating the role of the probe's shape. For a prolate probe, regardless of the value of â, the microviscosity monotonically decreases, or “velocity thins,” from a Newtonian plateau at small Pe until a second Newtonian plateau is reached as Pe-->[infinity]. After appropriate scaling, we demonstrate this behavior to be in agreement with microrheology studies using spherical probes [Squires and Brady, “A simple paradigm for active and nonlinear microrheology,” Phys. Fluids 17(7), 073101 (2005)] and conventional (macro-)rheological investigations [Bergenholtz et al., “The non-Newtonian rheology of dilute colloidal suspensions,” J. Fluid. Mech. 456, 239–275 (2002)]. For an oblate probe, the microviscosity again transitions between two Newtonian plateaus: for â3.52 the microviscosity at small Pe is less than at large Pe, which suggests it “velocity thickens” as Pe is increased. This anomalous velocity thickening—due entirely to the probe shape—highlights the care needed when designing microrheology experiments with non-spherical probes

    A Channel Coding Perspective of Collaborative Filtering

    Full text link
    We consider the problem of collaborative filtering from a channel coding perspective. We model the underlying rating matrix as a finite alphabet matrix with block constant structure. The observations are obtained from this underlying matrix through a discrete memoryless channel with a noisy part representing noisy user behavior and an erasure part representing missing data. Moreover, the clusters over which the underlying matrix is constant are {\it unknown}. We establish a sharp threshold result for this model: if the largest cluster size is smaller than C1log(mn)C_1 \log(mn) (where the rating matrix is of size m×nm \times n), then the underlying matrix cannot be recovered with any estimator, but if the smallest cluster size is larger than C2log(mn)C_2 \log(mn), then we show a polynomial time estimator with diminishing probability of error. In the case of uniform cluster size, not only the order of the threshold, but also the constant is identified.Comment: 32 pages, 1 figure, Submitted to IEEE Transactions on Information Theor

    On the bulk viscosity of suspensions

    Get PDF
    The bulk viscosity of a suspension relates the deviation of the trace of the macroscopic or averaged stress from its equilibrium value to the average rate of expansion. For a suspension the equilibrium macroscopic stress is the sum of the fluid pressure and the osmotic pressure of the suspended particles. An average rate of expansion drives the suspension microstructure out of equilibrium and is resisted by the thermal motion of the particles. Expressions are given to compute the bulk viscosity for all concentrations and all expansion rates and shown to be completely analogous to the well-known formulae for the deviatoric macroscopic stress, which are used, for example, to compute the shear viscosity. The effect of rigid spherical particles on the bulk viscosity is determined to second order in volume fraction and to leading order in the Péclet number, which is defined as the expansion rate made dimensionless with the Brownian time scale. A repulsive hard-sphere-like interparticle force reduces the hydrodynamic interactions between particles and decreases the bulk viscosity

    A new resistance function for two rigid spheres in a uniform compressible low-Reynolds-number flow

    Get PDF
    The pressure moment of a rigid particle is defined as the trace of the first moment of the surface stress acting on the particle. We calculate the pressure moments of two unequal rigid spheres immersed in a uniform compressible linear flow, using twin multipole expansions and lubrication theory. Following the practice established in previous studies on two-body hydrodynamic interactions at low Reynolds number, the results are expressed in terms of a new (stresslet) resistance function
    corecore