2 research outputs found

    Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation.

    No full text
    Cyclophosphamide (CYCP), a synthetic alkylating antineoplastic, disrupts both cancerous and non-cancerous cells to cause cancer regression and multi organotoxicity respectively. CYCP-induced hepatotoxicity is rare but possible. Evidence has shown that naringin has several beneficial potentials against oxidative stress, inflammation, and fibrosis. This study examined the chemoprotective potentials of naringin on exited radical scavenging, hepatic integrity, oxidative stress, fibrosis, and inflammation in CYCP-mediated hepatotoxicity. Rats were pre-treated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) of naringin before single CYCP (200 mg/kg, i.p.) administration. Subsequently, the rats were euthanized; blood and liver were removed, and assessed for serum and hepatic enzymes, oxidative stress, inflammation, and gene expression dynamics. Naringin concentrations required for 50% scavenging hydroxyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) radical cation were 0.32 mg/mL and 0.39 mg/mL, respectively. Pretreatment with naringin significantly (p < 0.05) abolish CYCP-induced changes in the activities of serum and hepatic ALT, AST, GGT, ALP, and LDH. Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-mediated increases in hepatic levels of malondialdehyde, hydroperoxide, and nitric oxide; reverse CYCP-induced decreases in the hepatic glutathione levels, activities of catalase, glutathione peroxidase, and glutathione reductase; and also attenuated CYCP-induced upregulation of expression of hepatic chemokine (C-C motif) ligand 2 (CCL2), interferon alpha1 (IFN-α1), interleukine-1β, interleukine-1 receptor, and transforming growth factor beta 1 (TGF-β1). Taken together, different doses of naringin can prevent CYCP-induced oxidants generation, hepatocytes dysfunctions, oxidative stress as well as inflammatory perturbations in rats when pre-administered for as few as 14 days

    Ferulic acid interventions ameliorate NDEA-CCl4-induced hepatocellular carcinoma via Nrf2 and p53 upregulation and Akt/PKB-NF-κB-TNF-α pathway downregulation in male Wistar rats

    No full text
    Hepatocellular carcinoma is a prevalent form of liver cancer that is life threatening. Many chemically synthesized anti-cancer drugs have various degrees of side effects. Hence, this study investigated the effect of FEAC interventions on NDEA-CCl4-induced HCAR in male Wistar rats. HCAR was induced by intraperitoneal administration of 200 mg/kg of NDEA and 0.5 mL/kg CCl4 (as a promoter of HCAR). Following the induction of HCAR, rats were treated differently with two different doses (25 and 50 mg/kg) of FEAC. HCAR induction was confirmed by the significant elevation of serum levels of ALT, AST, and α-FP. Also elevated significantly were liver levels of Akt/PKB, NF-κB, TNF-α, MDA, GSH, and activities of GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly lowered compared with normal rats. Treatment interventions with both 25 and 50 mg/kg of FEAC against the DEN-CCl4-induced HCAR gave comparable effects, marked by a significant reduction in the levels of serum ALT, AST and α-FP, as well as liver levels of MDA, GSH, Akt/PKB, NF-κB, TNF-α, GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly elevated compared with normal rats. Put together and judging by the outcomes of this study, FEAC being a potent antioxidant may also be potent against chemical-induced HCAR via upregulation of p53 and Nrf2, as well as downregulation of the Akt/PKB-NF-κB pathway in rats
    corecore