25 research outputs found

    Sewage sludge - a possible fertilizing resource in agriculture

    Get PDF

    Phytochemicals as Alternatives to Antibiotics in Animal Production

    Get PDF
    Despite the continuous improvement of feed diets and recipes, animal health problems persist. For their treatment, antibiotics and chemotherapy have been shown to have side effects hard to control. The antibiotic residues in animal products may endanger human health. Since the antibiotics were restricted in animals’ diets, which were previously used to keep under control digestive and respiratory pathologies, as well as allergies, so the researchers began to search for natural alternatives. Thus, it was developed the concept of phytoadditives, and these natural plant extracts are gaining ground in animal farming. Since then, more and more animal breeders and farms are willing to use various types of phytoadditives. This chapter aims to present the most widely used phytochemicals in animal nutrition, their effects on animal production and health, and to make some recommendations on the use of phytochemicals in farm animals’ diets

    The Role of Nutrition in Enhancing Sustainability in Sheep Production

    Get PDF
    Sheep nutrition is of paramount importance for ensuring sustainable sheep production, regardless of whether it follows traditional or precision methods. Optimal nutrition not only contributes to the well-being and productivity of sheep but also mitigates environmental consequences. Both traditional and precision production systems can adopt responsible management practices to enhance sustainability. These practices encompass maximizing pasture utilization, reducing dependency on synthetic inputs, minimizing waste generation, and implementing efficient feeding strategies. By giving due consideration to the nutritional requirements of sheep and their ecological footprint, sustainable sheep production can be successfully attained across various production systems. It is essential to strike a balance between meeting the nutritional needs of sheep and minimizing environmental impacts to foster a sustainable future for sheep farming

    Biorefinery for Rehabilitation of Heavy Metals Polluted Areas

    Get PDF
    Biorefinery applied in heavy metals polluted lands proposed here describes a process starting from soil (polluted and unfit for food and feed production) and solar energy stored in carbohydrates (regarded here as a solar energy carrier) to deliver liquid and gaseous biofuels, green building block chemicals for the market and return the rest of the matter (not delivered to the market) as fertilizer and soil improver, extracting the heavy metals from the polluted soil for safe reuse and remediating the land to sustainably deliver resources in a circular bioeconomy. The circular economy proposed in this chapter offers a novel approach to land rehabilitation by investigating the opportunity for economic value creation as an integral part of a rehabilitation strategy and production of biomaterials and biofuels as renewable energy carriers. The case study approached here can be developed in a complete circular biorefinery process and value chain enabling the use of heavy metals polluted lands for production of renewable energy and biomaterials and at the same time serve as a means of rehabilitation of contaminated lands. This biotechnology can be transferred and adapted in other areas improper for food/feed production due to contamination human industrial activity

    Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi

    Get PDF
    BackgroundAntimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options.PurposeThus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections.MethodsWe isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method.ResultsPreliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 μg/ml and 1 μg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 μg/ml and MIC90: 4 μg/mL) and fungi (MIC50: 4 μg/ml and MIC90: 8 μg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. ConclusionS. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases
    corecore