2 research outputs found

    Quark-lepton mass unification at TeV scales

    Full text link
    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (PQH) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)_PS \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_H. In particular, it focused on the issue of naturally light Dirac neutrino. The present paper will focus on similar issues in the other model, namely SU(4)_PS \otimes SU(3)_L \otimes SU(3)_H.Comment: Accepted for publication in PRD: The new version is in agreement with the accepted manuscrip

    Nambu monopoles in lattice Electroweak theory

    Full text link
    We considered the lattice electroweak theory at realistic values of α\alpha and θW\theta_W and for large values of the Higgs mass. We investigated numerically the properties of topological objects that are identified with quantum Nambu monopoles. We have found that the action density near the Nambu monopole worldlines exceeds the density averaged over the lattice in the physical region of the phase diagram. Moreover, their percolation probability is found to be an order parameter for the transition between the symmetric and the broken phases. Therefore, these monopoles indeed appear as real physical objects. However, we have found that their density on the lattice increases with increasing ultraviolet cutoff. Thus we conclude, that the conventional lattice electroweak theory is not able to predict the density of Nambu monopoles. This means that the description of Nambu monopole physics based on the lattice Weinberg - Salam model with finite ultraviolet cutoff is incomplete. We expect that the correct description may be obtained only within the lattice theory that involves the description of TeV - scale physics.Comment: LATE
    corecore