4 research outputs found

    Exploring the Safety Margin in Current Guidelines for Electromagnetic Exposure

    Get PDF
    Exposure to radio-frequency (RF) electromagnetic fields (EMF) is unavoidable in today's modern life. This exposure is growing mainly because of rapid growth in telecommunication systems. Awareness of the possible risks of exposure to EMF has raised public concern. To avoid any potential adverse health effect, international organizations of ICNIRP and IEEE have developed basic restrictions (BRs) on specific absorption rate (SAR) for human exposure to RF EMF. These restrictions were derived based on limited data, i.e. experimental assessments (almost entirely) in animals or dose assessment using generic phantoms (approximated human anatomy). In order to account for uncertainties in the data and to provide a sufficient level of safety, the limits are lowered by large safety factors which were selected based on expert opinion rather than a rigorous quantitative process. The safety factors are not quantified for various exposure scenarios. In view of the lack of knowledge on the incorporated safety factor, and in the light of unique opportunity that medical applications can provide to establish dose-response relationship for humans, the aim of this thesis is to explore the relevance of the current BRs for functional tissue changes and to tailor SAR limits for localized exposure above which tissue damage takes place. This thesis, by means of advanced simulation tools, shows that the current restrictions on local exposure to RF EMF are conservative and should be more refined based on accurate dosimetry and useful data on experimental assessments in humans

    SAR thresholds for electromagnetic exposure using functional thermal dose limits

    Get PDF
    Background and purpose: To protect against any potential adverse effects to human health from localised exposure to radio frequency (100 kHz–3 GHz) electromagnetic fields (RF EMF), international health organisations have defined basic restrictions on specific absorption rate (SAR) in tissues. These exposure restrictions incorporate safety factors which are generally conservative so that exposures that exceed the basic restrictions are not necessarily harmful. The magnitude of safety margin for various exposure scenarios is unknown. This shortcoming becomes more critical for medical applications where the safety guidelines are required to be relaxed. The purpose of this study was to quantify the magnitude of the safety factor included in the current basic restrictions for various exposure scenarios under localised exposure to RF EMF. Materials and methods: For each exposure scenario, we used the lowest thermal dose (TD) required to induce acute local tissue damage reported in literature, calculated the corresponding TD-functional SAR limits (SARTDFL) and related these limits to the existing basic restrictions, thereby estimating the respective safety factor. Results: The margin of safety factor in the current basic restrictions on 10 g peak spatial average SAR (psSAR10g) for muscle is large and can reach up to 31.2. Conclusions: Our analysis provides clear instructions for calculation of SARTDFL and consequently quantification of the incorporated safety factor in the current basic restrictions. This research can form the basis for further discussion on establishing the guidelines dedicated to a specific exposure scenario, i.e. exposure-specific SAR limits, rather than the current generic guidelines

    Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia

    Get PDF
    Clinical trials have demonstrated the therapeutic benefits of adding radiofrequency (RF) hyperthermia (HT) as an adjuvant to radio- and chemotherapy. However, maximum utilization of these benefits is hampered by the current inability to maintain the temperature within the desired range. RF HT treatment quality is usually monitored by invasive temperature sensors, which provide limited data sampling and are prone to infection risks. Magnetic resonance (MR) temperature imaging has been developed to overcome these hurdles by allowing noninvasive 3D temperature monitoring in the target and normal tissues. To exploit this feature, several approaches for inserting the RF heating devices into the MR scanner have been proposed over the years. In this review, we summarize the status quo in MR-guided RF HT devices and analyze trends in these hybrid hardware configurations. In addition, we discuss the various approaches, extract best practices and identify gaps regarding the experimental validation procedures for MR - RF HT, aimed at converging to a common standard in this process

    Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation

    No full text
    \u3cp\u3eAmong various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the tilted and cheek positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.\u3c/p\u3
    corecore