6 research outputs found
One-way transnational magnetic mass damper model for structural response control against dynamic loadings
Structural responses should be reduced to minimize the consequent structural damage caused by dynamic excitation. The one-way translational magnetic mass damper model is developed as a new type of damper for the purpose of structural response control. The damper utilizes the concept of repulsive force between magnets with same poles to create a magnetic force to stabilize or bring the structure back to its original position. The dynamic performance of the structure was tested using a harmonic shaking table. In this study, the three parameters used are excitation speeds: 2.5V (low), 6.0V (medium) and 8.5V (high); strength of magnets: weak (N35), medium (N45) and strong (N52); and the mass in the damper: 40 g, 101 g and 162 g. The correlations of the parameters towards the structural displacement are verified in the testing. The displacement is highly reduced up to 100% at the first level and 85.2% at the fifth level. The most optimum structural response control was attained when a strong magnetic strength and mass of 162 g are used. When tested with three excitation speeds; 2.5V, 6.0V and 8.5V, the damper with this setting provides the optimum damping effect towards the structure in terms of displacement
A study on association between tilt angle, solar insolation exposure and output of solar PV panel using BIM 3D modelling
Solar PV has been used extensively in the construction industry as non-renewable energy is not environmentally friendly and is costly. Building Information Modelling (BIM) can incorporate the solar energy application to reduce the dependency of non-renewable energy. This study attempted to propose a model of solar analysis using BIM software on existing buildings at Padang Besar, in terms of best orientation and optimum tilt angle. The finding of July 2017 shows that the ideal orientation of solar panel installation for the building is tilted 10° North and 20° West. Analysis indicated that the higher solar irradiance harvested contributed towards higher generation of power. The use of BIM software incorporating fieldwork data proved to be more convenient compared to the conventional physical method in proposing options for solar panel installation. The finding from the solar analysis of the proposed model indicates that solar insolation exposure on the roof increased by 1.45% compared to the existing roof design. Therefore, it can increase the renewable energy potential in an effective way
A study on association between tilt angle, solar insolation exposure and output of solar PV panel using BIM 3D modelling
Solar PV has been used extensively in the construction industry as non-renewable energy is not environmentally friendly and is costly. Building Information Modelling (BIM) can incorporate the solar energy application to reduce the dependency of non-renewable energy. This study attempted to propose a model of solar analysis using BIM software on existing buildings at Padang Besar, in terms of best orientation and optimum tilt angle. The finding of July 2017 shows that the ideal orientation of solar panel installation for the building is tilted 10° North and 20° West. Analysis indicated that the higher solar irradiance harvested contributed towards higher generation of power. The use of BIM software incorporating fieldwork data proved to be more convenient compared to the conventional physical method in proposing options for solar panel installation. The finding from the solar analysis of the proposed model indicates that solar insolation exposure on the roof increased by 1.45% compared to the existing roof design. Therefore, it can increase the renewable energy potential in an effective way
Evaluation of bond strength between normal concrete and high performance fiber reinforced concrete (HPFRC)
High Performance Fiber Reinforced Concrete (HPFRC) has been proposed to be used as a repair material for the deterioration of concrete structure since its very low porosity that leads to a low permeability and high durability. This characteristic makes it suitable for rehabilitation and retrofitting reinforced concrete structures or for as a new repair material. The bond strength between HPFRC and old concrete should have a good bond strength, thus surface preparation method and curing method can help strengthen the bond strength between HPFRC and normal concrete. This paper was performed to study the effect of surface preparation and curing method on the bond strength between HPFRC and normal concrete. In this study, three surface preparations were prepared: sandblasting, grooved and drill hole. Then, the curing methods that were performed in this study are ambient curing and water curing. The tests that were conducted to evaluate the bond strength between HPFRC and normal concrete are slant shear test and splitting tensile test. The result from this study shows that sandblasting gave the highest bond strength result between normal concrete and HPFRC. For the curing method, water curing gives the highest bond strength between normal concrete and HPFRC
Evaluation of bond strength between normal concrete and high performance fiber reinforced concrete (HPFRC)
High Performance Fiber Reinforced Concrete (HPFRC) has been proposed to be used as a repair material for the deterioration of concrete structure since its very low porosity that leads to a low permeability and high durability. This characteristic makes it suitable for rehabilitation and retrofitting reinforced concrete structures or for as a new repair material. The bond strength between HPFRC and old concrete should have a good bond strength, thus surface preparation method and curing method can help strengthen the bond strength between HPFRC and normal concrete. This paper was performed to study the effect of surface preparation and curing method on the bond strength between HPFRC and normal concrete. In this study, three surface preparations were prepared: sandblasting, grooved and drill hole. Then, the curing methods that were performed in this study are ambient curing and water curing. The tests that were conducted to evaluate the bond strength between HPFRC and normal concrete are slant shear test and splitting tensile test. The result from this study shows that sandblasting gave the highest bond strength result between normal concrete and HPFRC. For the curing method, water curing gives the highest bond strength between normal concrete and HPFRC
One-way translational magnetic mass damper model for structural response control against dynamic loadings
Structural responses should be reduced to minimize the consequent structural damage caused by dynamic excitation. The one-way translational magnetic mass damper model is developed as a new type of damper for the purpose of structural response control. The damper utilizes the concept of repulsive force between magnets with same poles to create a magnetic force to stabilize or bring the structure back to its original position. The dynamic performance of the structure was tested using a harmonic shaking table. In this study, the three parameters used are excitation speeds: 2.5V (low), 6.0V (medium) and 8.5V (high); strength of magnets: weak (N35), medium (N45) and strong (N52); and the mass in the damper: 40 g, 101 g and 162 g. The correlations of the parameters towards the structural displacement are verified in the testing. The displacement is highly reduced up to 100% at the first level and 85.2% at the fifth level. The most optimum structural response control was attained when a strong magnetic strength and mass of 162 g are used. When tested with three excitation speeds; 2.5V, 6.0V and 8.5V, the damper with this setting provides the optimum damping effect towards the structure in terms of displacement