6 research outputs found

    The human major histocompatibility complex and childhood leukemia: An etiological hypothesis based on molecular mimicry

    Get PDF
    AbstractThe extended human major histocompatibility complex (MHC) is a gene-rich region of about 7.6 Mb on chromosome 6, and includes a high proportion of genes involved in the immune response. Among these are the two Human Leukocyte Antigen (HLA) gene clusters, class I and class II, which encode highly polymorphic classical HLA-A, B, C and HLA-DR, DQ and DP genes, respectively. The protein products of the classical HLA genes are heterodimeric cell surface molecules that bind short peptides derived from non-self and self proteins, including infections and auto-antigens. The presentation of these HLA-anchored peptides to T lymphocytes triggers a cascade of responses in immune-associated genes that leads to adaptive immunity. Associations between HLA class II alleles and childhood leukemia have been reported in a number of studies. This could be due to the role of HLA allele-restricted peptide binding and T cell activation, or linkage disequilibrium to an MHC-linked “leukemia gene” in the pathogenesis of childhood leukemia. Efforts are currently in progress to resolve these questions, using large leukemia case-control sample series such as the UK Childhood Cancer Study (UKCCS) and the Northern California Childhood Leukemia Study (NCCLS). Here we review the background to these studies, and present a novel hypothesis based on the paradigm of HLA-associated auto-immune disease that might explain an infection-based etiology of childhood leukemia

    HLA-DPB1 supertype-associated protection from childhood leukaemia: relationship to leukaemia karyotype and implications for prevention

    No full text
    Most childhood B cell precursor (BCP) acute lymphoblastic leukaemia (ALL) cases carry the reciprocal translocation t(12;21)(p13;q22) (similar to 25%), or a high hyperdiploid (HeH) karyotype (30%). The t(12;21) translocation leads to the expression of a novel fusion gene, TEL-AML1 (ETV6-RUNX1), and HeH often involves tri- and tetrasomy for chromosome 21. The presence of TEL-AML1+ and HeH cells in utero prior to the development of leukaemia suggests that these lesions play a critical role in ALL initiation. Based on our previous analysis of HLA-DP in childhood ALL, and evidence from in vitro studies that TEL-AML1 can activate HLA-DP-restricted T cell responses, we hypothesised that the development of TEL-AML1+ ALL might be influenced by the child's DPB1 genotype. To test this, we analysed the frequency of six HLA-DPB1 supertypes in a population-based series of childhood leukaemias (n = 776) classified by their karyotype (TEL-AML1+, HeH and others), in comparison with newborn controls (n = 864). One DPB1 supertype (GKD) conferred significant protection against TEL-AML1+ ALL (odds ratio (OR), 95% confidence interval (95% CI): 0.42, 0.22-0.81; p < 0.005) and HeH ALL (OR; 95% CI: 0.44, 0.30-0.65; p < 0.0001). These negative associations were almost entirely due to a single allele, DPB1*0101. Our results suggest that DPB1*0101 may afford protection from the development of TEL-AML1+ and HeH BCP ALL, possibly as the result of a DP-restricted immune response to BCP ALL-associated antigen(s), the identification of which could have important implications for the design of prophylactic vaccine
    corecore