7 research outputs found

    New Biocompatible Mesoporous Silica/Polysaccharide Hybrid Materials as Possible Drug Delivery Systems

    No full text
    A high number of studies support the use of mesoporous silica nanoparticles (MSN) as carriers for drug delivery systems due to its high biocompatibility both in vitro and in vivo, its large surface area, controlled pore size and, more than this, its good excretion capacity from the body. In this work we attempt to establish the optimal encapsulation parameters of benzalkonium chloride (BZC) into MSN and further study its drug release. The influence of different parameters towards the drug loading in MSN such as pH, contact time and temperature were considered. The adsorption mechanism of the drug has been determined by using the equilibrium data. The modification process was proved using several methods such as Fourier transform-infrared (FT-IR), ultraviolet-visible (UV-VIS), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Since MSN shows a lower drug release amount due to the agglomeration tendency, in order to increase MSN dispersion and drug release amount from MSN, two common biocompatible and biodegradable polymers were used as polymer matrix in which the MSN-BZC can be dispersed. The drug release profile of the MSN-BZC and of the synthesized hybrid materials were studied both in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Polymer-MSN-BZC hybrid materials exhibit a higher drug release percent than the pure MSN-BZC when a higher dispersion is achieved. The dispersion of MSN into the hybrid materials was pointed out in scanning electron microscope (SEM) images. The release mechanism was determined using four mathematic models including first-order, Higuchi, Korsmeyer⁻Peppas and Weibull

    Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery

    No full text
    The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R2 = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations

    5-Aminosalicylic Acid Loaded Chitosan-Carrageenan Hydrogel Beads with Potential Application for the Treatment of Inflammatory Bowel Disease

    No full text
    The aim of our work is to prepare mucoadhesive particles with biopolymers and 5-Aminosalicylic acid (5ASA) using the ionotropic gelation technique to ensure a controlled drug release at the colon level with potential applications in the treatment of intestinal bowel disease (IBD). The preparation of particles through the crosslinking of Chitosan (CS) with sodium tripolyphosphate (TPP) using different mass ratios and the influence of the k-Carrageenan (kCG) layer were studied. UV–VIS spectrometry was employed to assess encapsulation efficiency and drug release profile of 5ASA. The particles were investigated using FT-IR spectrometry for chemical characterization and the DLS results highlighted a monodisperse particle size distribution. The morphology of the polymeric beads was investigated using micro-computer tomography (µCT) and Scanning Electron Microscopy (SEM). Particles based on Chitosan and k-Carrageenan were able to incorporate and preserve 5ASA in an acidic and alkaline medium. The 5ASA loaded polymeric particles obtained after immersion for 1 h in kCG solution exhibited the lowest release rate in pH = 1.2. Biocompatibility studies performed on all of the particles displayed a good viability for the CCD 841 CoN cells and low cytotoxicity. All of the results have shown that these new biomaterials could be a versatile platform of targeted carriers with potential applications in inflammatory bowel disease treatment

    Novel Chemical Architectures Based on Beta-Cyclodextrin Derivatives Covalently Attached on Polymer Spheres

    No full text
    This study presents the synthesis and characterization of polymer derivatives of beta-cyclodextrin (BCD), obtained by chemical grafting onto spherical polymer particles (200 nm) presenting oxirane functional groups at their surface. The polymer spheres were synthesized by emulsion polymerization of styrene (ST) and hydroxyethyl methacrylate (HEMA), followed by the grafting on the surface of glycidyl methacrylate (GMA) by seeded emulsion polymerization. The BCD-polymer derivatives were obtained using two BCD derivatives with hydroxylic (BCD-OH) and amino groups (BCD-NH2). The degree of polymer covalent functionalization using the BCD-OH and BCD-NH2 derivatives were determined to be 4.27 and 19.19 weight %, respectively. The adsorption properties of the materials were evaluated using bisphenol A as a target molecule. The best fit for the adsorption kinetics was Lagergren’s model (both for Qe value and for R2) together with Weber’s intraparticle diffusion model in the case of ST-HEMA-GMA-BCD-NH2. The isothermal adsorption evaluation indicated that both systems follow a Langmuir type behavior and afforded a Qmax value of 148.37 mg g−1 and 37.09 mg g−1 for ST-HEMA-GMA-BCD-NH2 and ST-HEMA-GMA-BCD-OH, respectively. The BCD-modified polymers display a degradation temperature of over 400 °C which can be attributed to the existence of hydrogen bonds and BCD thermal degradation pathway in the presence of the polymers

    Bisphenol A Adsorption on Silica Particles Modified with Beta-Cyclodextrins

    No full text
    This study presents the synthesis of silica particles bearing two beta-cyclodextrin (BCD) (beta-cyclodextrin-BCD-OH and diamino butane monosubstituted beta-cyclodextrin-BCD-NH2). The successful synthesis of the BCD-modified silica was confirmed by FT-IR and TGA. Using contact angle measurements, BET analysis and SEM characterization, a possible formation mechanism for the generation of silica particles bearing BCD derivatives on their surface was highlighted. The obtained modified silica displayed the capacity to remove bisphenol A (BPA) from wastewater due to the presence of the BCD moieties on the surface of the silica. The kinetic analysis showed that the adsorption reached equilibrium after 180 min for both materials with qe values of 107 mg BPA/g for SiO2-BCD-OH and 112 mg BPA/g for SiO2-BCD-NH2. The process followed Ho’s pseudo-second-order adsorption model sustaining the presence of adsorption sites with different activities. The fitting of the Freundlich isotherm model on the experimental results was also evaluated, confirming the BCD influence on the materials’ adsorption properties

    Novel Hydrophobic Nanostructured Antibacterial Coatings for Metallic Surface Protection

    No full text
    A simple and cost-efficient method to modify different surfaces in order to improve their bioactivity, corrosion and wear resistance proved to be sol-gel coatings. The silane layers have been shown to be effective in the protection of steel, aluminum or magnesium alloys and copper and copper alloys. Moreover, it has been found that the adding of different inorganic nanoparticles into silica films leads to increasing their performance regarding corrosion protection. In this study, we fabricated, a simple sol-gel method, transparent mono- and bi-layered hydrophobic coatings with simultaneous antibacterial, hydrophobic and anti-corrosive properties for the protection of metallic surfaces against the action of air pollutants or from biological attacks of pathogens. The first layer (the base) of the coating contains silver (Ag) or zinc oxide (ZnO) nanoparticles with an antibacterial effect. The second layer includes zinc oxide nanoparticles with flower-like morphology to increase the hydrophobicity of the coating and to improve corrosion-resistant properties. The second layer of the coating contains a fluorinated silica derivative, 1H,1H,2H,2H-perfluorooctyl triethoxysilane (PFOTES), which contributes to the hydrophobic properties of the final coating by means of its hydrophobic groups. The mono- and bi-layered coatings with micro/nano rough structures have been applied by brushing on various substrates, including metallic surfaces (copper, brass and mild steel) and glass (microscope slides). The as-prepared coatings showed improved hydrophobic properties (water CA > 90°) when compared with the untreated substrates while maintaining the transparent aspect. The corrosion resistance tests revealed significantly lower values of the corrosion rates recorded for all the protected metallic surfaces, with the lowest values being measured for the bi-layered coatings containing ZnO particles, both in the first and in the second layers of the coating. Considering the antibacterial activity, the most effective were the AOAg-II and AOZnO-II coatings, which exhibited the highest reduction of microbial growth

    Novel Polyurethanes Based on Recycled Polyethylene Terephthalate: Synthesis, Characterization, and Formulation of Binders for Environmentally Responsible Rocket Propellants

    No full text
    Novel polyurethane-based binders, specifically designed for environmentally responsible rocket propellant composites, were obtained by employing the polyester-polyols that resulted from the degradation of polyethylene terephthalate waste. A new class of “greener” rocket propellants, comprising polyurethanes (based on recycled PET) as the binder, phase stabilized ammonium nitrate (PSAN) as the eco-friendly oxidizer, and triethylene glycol dinitrate (TEGDN) as the energetic plasticizer, together with aluminum as fuel and Fe2O3 as the catalyst, is herein reported. The components of the energetic mixtures were investigated (individually and as composite materials) through specific analytical tools: 1H-NMR, FT-IR, SEM-EDX, DTA and TGA, tensile and compression tests, DMA, and micro-CT. Moreover, the feasibility of this innovative solution is sustained by the ballistic performances exhibited by these composite materials in a subscale rocket motor, proving that these new formulations are suitable for rocket propellant applications
    corecore