14 research outputs found

    The 5-HTTLPR variant in the serotonin transporter gene modifies degeneration of brain regions important for emotion in behavioral variant frontotemporal dementia

    Get PDF
    AbstractThe serotonin transporter length polymorphism (5-HTTLPR) short allele (5-HTTLPR-s) has been associated with differential susceptibility for anxiety and depression in multiple psychiatric disorders. 5-HTTLPR-s modifies the serotonergic systems that support emotion and behavioral regulation by reducing gene expression, which slows the reuptake of serotonin, and is associated with distinct morphological and functional effects. Serotonergic systems are also shown to be dysfunctional in behavioral variant frontotemporal dementia (bvFTD), a disease characterized by marked socioemotional dysfunction. However, studies of 5-HTTLPR-s effects in bvFTD have been inconsistent. Our objective was to investigate the patterns of gray matter volume by 5-HTTLPR-s genotype in both healthy older controls and bvFTD patients. We performed voxel-based morphometry of 179 cognitively normal older adults and 24 bvFTD cases to determine brain changes associated with dose (0/1/2) of 5-HTTLPR-s allele. 5-HTTLPR-s frequency did not differ between controls and bvFTD. We found a significant interaction effect whereby carrying more 5-HTTLPR-s alleles in bvFTD was associated with smaller volume in left inferior frontal gyrus (T = 4.86, PFWE = 0.03) and larger volume in right temporal lobe (T = 5.01, PFWE = 0.01). These results suggest that the 5-HTTLPR-s allele differentially influences brain morphology in bvFTD. We propose that patients with bvFTD and 5-HTTLPR-s have altered volumes in regions that support socioemotional behavior, which may be a developmental or disease-related compensation for altered serotonergic activity

    GBS-based SNP map pinpoints the QTL associated with sorghum downy mildew resistance in maize (Zea mays L.)

    Get PDF
    Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs

    Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy

    Full text link
    Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain structures for human empathy

    Neural basis of motivational approach and withdrawal behaviors in neurodegenerative disease.

    No full text
    IntroductionThe Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been theorized as neural systems that regulate approach/withdrawal behaviors. Behavioral activation/inhibition balance may change in neurodegenerative disease based on underlying alterations in systems supporting motivation and approach/withdrawal behaviors, which may in turn be reflected in neuropsychiatric symptoms.MethodA total of 187 participants (31 patients diagnosed with behavioral variant of FTD [bvFTD], 13 semantic variant of primary progressive aphasia [svPPA], 14 right temporal variant FTD [rtFTD], 54 Alzheimer's disease [AD], and 75 older healthy controls [NCs]) were included in this study. Changes in behavioral inhibition/activation were measured using the BIS/BAS scale. We analyzed the correlation between regional atrophy pattern and BIS/BAS score, using voxel-based morphometry (VBM).ResultsADs had significantly higher BIS scores than bvFTDs and NCs. bvFTDs activation-reward response (BAS-RR) was significantly lower than ADs and NCs, though their activation-drive (BAS-D) was significantly higher than in ADs. Both AD and rtFTD patients had abnormally low activation fun-seeking (BAS-FS) scores. BIS score correlated positively with right anterior cingulate and middle frontal gyrus volume, as well as volume in the right precentral gyrus and left insula/operculum.ConclusionsAD, bvFTD, and rtFTD patients show divergent patterns of change in approach/withdrawal reactivity. High BIS scores correlated with preservation of right-predominant structures involved in task control and self-protective avoidance of potentially negative reinforcers. Damage to these regions in bvFTD may create a punishment insensitivity that underlies patients' lack of self-consciousness in social contexts

    DataSheet_1_Unlocking the genetic diversity of Indian turmeric (Curcuma longa L.) germplasm based on rhizome yield traits and curcuminoids.doc

    No full text
    Turmeric is an important commercial crop widely grown in Asia due to its pharmacological and nutritional value. India is the centre of turmeric diversity and many turmeric accessions have good rhizome yield, varying curcuminoids content and are well-adapted to various agro-climatic zones. In the present study, we unravel the diversity among 200 Indian turmeric accessions based on rhizome yield traits and curcuminoids content. Clustering and correlation studies were also performed to group the turmeric accessions and to observe the relationship between the traits. Results revealed the presence of large variability among turmeric accessions including the major traits such as yield (24.77 g p-1 to 667.63 g p-1), dry recovery percentage (13.42% to 29.18%), curcumin (0.41% to 2.17%), demethoxycurcumin (0.38% to 1.45%), bisdemethoxycurcumin (0.37% to 1.24%) and total curcuminoid content (1.26% to 4.55%). The superior germplasm identified for curcuminoids content were as follows; curcumin (CL 157 – 2.17% and CL 272 – 2.13%), demethoxycurcumin (CL 253 – 1.45% and CL 157 – 1.31%), bisdemethoxycurcumin (CL 216 – 1.24% and CL 57 – 1.11%) and total curcuminoid content (CL 157 – 4.55% and CL 272 – 4.37%). Clustering based on dendrogram, grouped 200 accessions into seven clusters. Among seven clusters, the maximum number of accessions were grouped into cluster II while cluster VII showed maximum mean value for majority of the traits. Correlation analysis revealed a significant relationship between the traits where the total curcuminoid content is significantly and positively correlated with the primary rhizome core diameter and length of the secondary rhizome. The selection of these particular traits may result in the identification of germplasm with high total curcuminoid content. Taken together, it is the first report on the large screening of turmeric accessions for variation in the rhizome yield traits and curcuminoids content. The genetic diversity revealed in this study could be useful for further crop improvement programs in turmeric to develop new varieties with high rhizome yield coupled with high curcuminoids content.</p
    corecore