7 research outputs found
Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states
We present a novel, detailed study on the usefulness of three-mode Gaussian
states states for realistic processing of continuous-variable quantum
information, with a particular emphasis on the possibilities opened up by their
genuine tripartite entanglement. We describe practical schemes to engineer
several classes of pure and mixed three-mode states that stand out for their
informational and/or entanglement properties. In particular, we introduce a
simple procedure -- based on passive optical elements -- to produce pure
three-mode Gaussian states with {\em arbitrary} entanglement structure (upon
availability of an initial two-mode squeezed state). We analyze in depth the
properties of distributed entanglement and the origin of its sharing structure,
showing that the promiscuity of entanglement sharing is a feature peculiar to
symmetric Gaussian states that survives even in the presence of significant
degrees of mixedness and decoherence. Next, we discuss the suitability of the
considered tripartite entangled states to the implementation of quantum
information and communication protocols with continuous variables. This will
lead to a feasible experimental proposal to test the promiscuous sharing of
continuous-variable tripartite entanglement, in terms of the optimal fidelity
of teleportation networks with Gaussian resources. We finally focus on the
application of three-mode states to symmetric and asymmetric telecloning, and
single out the structural properties of the optimal Gaussian resources for the
latter protocol in different settings. Our analysis aims to lay the basis for a
practical quantum communication with continuous variables beyond the bipartite
scenario.Comment: 33 pages, 10 figures (some low-res due to size constraints), IOP
style; (v2) improved and reorganized, accepted for publication in New Journal
of Physic
Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems
For continuous-variable systems, we introduce a measure of entanglement, the
continuous variable tangle ({\em contangle}), with the purpose of quantifying
the distributed (shared) entanglement in multimode, multipartite Gaussian
states. This is achieved by a proper convex roof extension of the squared
logarithmic negativity. We prove that the contangle satisfies the
Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states,
and in all fully symmetric --mode Gaussian states, for arbitrary . For
three--mode pure states we prove that the residual entanglement is a genuine
tripartite entanglement monotone under Gaussian local operations and classical
communication. We show that pure, symmetric three--mode Gaussian states allow a
promiscuous entanglement sharing, having both maximum tripartite residual
entanglement and maximum couplewise entanglement between any pair of modes.
These states are thus simultaneous continuous-variable analogs of both the GHZ
and the states of three qubits: in continuous-variable systems monogamy
does not prevent promiscuity, and the inequivalence between different classes
of maximally entangled states, holding for systems of three or more qubits, is
removed.Comment: 13 pages, 1 figure. Replaced with published versio
Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation
A powerful theoretical structure has emerged in recent years on the
characterization and quantification of entanglement in continuous-variable
systems. After reviewing this framework, we will illustrate it with an original
set-up based on a type-II OPO with adjustable mode coupling. Experimental
results allow a direct verification of many theoretical predictions and provide
a sharp insight into the general properties of two-mode Gaussian states and
entanglement resource manipulation
Quantifying decoherence in continuous variable systems
We present a detailed report on the decoherence of quantum states of
continuous variable systems under the action of a quantum optical master
equation resulting from the interaction with general Gaussian uncorrelated
environments. The rate of decoherence is quantified by relating it to the decay
rates of various, complementary measures of the quantum nature of a state, such
as the purity, some nonclassicality indicators in phase space and, for two-mode
states, entanglement measures and total correlations between the modes.
Different sets of physically relevant initial configurations are considered,
including one- and two-mode Gaussian states, number states, and coherent
superpositions. Our analysis shows that, generally, the use of initially
squeezed configurations does not help to preserve the coherence of Gaussian
states, whereas it can be effective in protecting coherent superpositions of
both number states and Gaussian wave packets.Comment: Review article; 36 pages, 19 figures; typos corrected, references
adde
Extremal entanglement and mixedness in continuous variable systems
We investigate extremal entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on p-norms to quantify mixedness, and give their explicit expression in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity for n-mode states. We then review the argument proving the existence of both maximally and minimally entangled two--mode states at given global and marginal purities (with the entanglement quantified by the logarithmic negativity). Exploiting these results, we extend such an analysis to generalized entropies, fully characterizing maximally and minimally entangled states for given global and local generalized entropies. The privileged role of the purity in quantifying the mixedness of continuous variable systems is stressed and a proposal to estimate entanglement by purity measurements is finally reviewed