7 research outputs found

    Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    Full text link
    We present a novel, detailed study on the usefulness of three-mode Gaussian states states for realistic processing of continuous-variable quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure -- based on passive optical elements -- to produce pure three-mode Gaussian states with {\em arbitrary} entanglement structure (upon availability of an initial two-mode squeezed state). We analyze in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with continuous variables. This will lead to a feasible experimental proposal to test the promiscuous sharing of continuous-variable tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with continuous variables beyond the bipartite scenario.Comment: 33 pages, 10 figures (some low-res due to size constraints), IOP style; (v2) improved and reorganized, accepted for publication in New Journal of Physic

    Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Full text link
    For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric NN--mode Gaussian states, for arbitrary NN. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the WW states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.Comment: 13 pages, 1 figure. Replaced with published versio

    Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    Get PDF
    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation

    Quantifying decoherence in continuous variable systems

    Full text link
    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some nonclassicality indicators in phase space and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wave packets.Comment: Review article; 36 pages, 19 figures; typos corrected, references adde

    Extremal entanglement and mixedness in continuous variable systems

    Full text link
    We investigate extremal entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on p-norms to quantify mixedness, and give their explicit expression in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity for n-mode states. We then review the argument proving the existence of both maximally and minimally entangled two--mode states at given global and marginal purities (with the entanglement quantified by the logarithmic negativity). Exploiting these results, we extend such an analysis to generalized entropies, fully characterizing maximally and minimally entangled states for given global and local generalized entropies. The privileged role of the purity in quantifying the mixedness of continuous variable systems is stressed and a proposal to estimate entanglement by purity measurements is finally reviewed
    corecore