3 research outputs found
Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats
The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p < 0.05) in serum total cholesterol, triglyceride, and vLDL. Feeding on POME led to significant increase (p < 0.05) in cholesterol, triglyceride and LDL levels in brain tissues. Increased hepatic LDL level was also observed in POME fed rats. Except for hepatic triglyceride and tissues HDL level, a rather reduced level of the studied lipids was observed in the serum and tissues of palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent
Ethanol extract of Tetrapleura tetraptera fruit peels: Chemical characterization, and antioxidant potentials against free radicals and lipid peroxidation in hepatic tissues
The chemical and antioxidant properties of the ethanolic extract of Tetrapleura tetraptera fruit peels were investigated. Dried peels of T. tetraptera fruits were extracted with ethanol. The extract was subjected to preliminary phytochemical screening using standard procedures. GCâMS was used in identifying the secondary metabolites. The antioxidant properties of the extract were determined by its ferric reducing activity, 2,2â²-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radicals scavenging activities, and the inhibition of lipid peroxidation in hepatic tissues of albino male rats. Preliminary phytochemical screening revealed the presence of flavonoids, phenols, tannins, saponins, terpenoids and phlebotannin. GCâMS analysis revealed the presence of D-fructose, piperazine, octodrine, glycidol, glyceraldehydes, 6-octadecenoic acid and 9,12-octadecenoic acid, with Dâfructose being the most predominant compound. The extract exhibited high antioxidant activities both in vitro and ex vivo, as indicated by its ability to scavenge DPPH and nitric oxide as well as inhibition of lipid peroxidation. This is further portrayed by its ferric reducing activity. These results suggest an antioxidant protective effect of the extract against oxidative hepatic damage and can be attributed to a synergetic action of the identified bioactive compounds. Keywords: Antioxidant, Lipid peroxidation, Phytochemicals, Secondary metabolite