58 research outputs found

    Advance care planning for patients with end-stage kidney disease on dialysis: narrative review of the current evidence, and future considerations

    Get PDF
    Patients with end-stage kidney disease (ESKD) have a high symptom-burden and high rates of morbidity and mortality. Despite this, evidence has shown that this patient group does not have timely discussions to plan for deterioration and death, and at the end of life there are unmet palliative care needs. Advance care planning is a process that can help patients share their personal values and preferences for their future care and prepare for declining health. Earlier, more integrated and holistic advance care planning has the potential to improve access to care services, communication, and preparedness for future decision-making and changing circumstances. However, there are many barriers to successful implementation of advance care planning in this population. In this narrative review we discuss the current evidence for advance care planning in patients on dialysis, the data around the barriers to advance care planning implementation, and interventions that have been trialled. The review explores whether the concepts and approaches to advance care planning in this population need to be updated to encompass current and future care. It suggests that a shift from a problem-orientated approach to a goal-orientated approach may lead to better engagement, with more patient-centred and satisfying outcomes

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η⃗=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, m⃗s\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for T→TcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>T∗T> T^{*} and T<T∗T< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Surface superconductivity and order parameter suppression in UPt3_3

    Full text link
    We show that a recent measurement of surface superconductivity in UPt3_3 (Keller {\it et. al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994)) can be understood if the superconducting pair wavefunction is suppressed anisotropically at a vacuum to superconductor interface. Further measurements of surface superconductivity can distinguish between the various phenomenological models of superconducting UPt3_3.Comment: 4 pages, latex, 2 Figures available upon request ([email protected]

    Phase diagram of UPt3_3 in the E1gE_{1g} model

    Full text link
    The phase diagram of the unconventional superconductor UPt3_3 is explained under the long-standing hypothesis that the pair wavefunction belongs to the E1gE_{1g} representation of the point group. The main objection to this theory has been that it disagrees with the experimental phase diagram when a field is applied along the c-axis. By a careful analysis of the free energy this objection is shown to be incorrect. This singlet theory also explains the unusual anisotropy in the upper critical field curves, often thought to indicate a triplet pair function.Comment: 11 pages, Revtex, 2 figures (uuencoded, gzip'ed Postscript

    Surface superconductivity and Hc3H_{c3} in UPt3_3

    Full text link
    Surface superconductivity is studied within Ginzburg-Landau theory for two classes of models for the order parameter of UPt3_{3}. The first class assumes two independent one-dimensional order parameters (ABAB models), while the second assumes a single two-dimensional order parameter (EE models). Hc3H_{c3} is calculated for all cases where the surface normal and magnetic field lie along high symmetry directions. Assuming specular reflection, it is found that except when H∥c^{\bf H}\parallel{\bf\hat c}, the ratio Hc3/Hc2H_{c3}/H_{c2} is either unity or equals its `s-wave' value 1.695, although the precise Hc3H_{c3} vs. TT curve predicted by the ABAB and EE models differs for various geometries. The results are compared with recent experiments, and predictions are made for future experiments.Comment: 26 pages, with 6 figure

    E1gE_{1g} model of superconducting UPt3_3

    Full text link
    The phase diagram of superconducting UPt3_3 is explained in a Ginzburg-Landau theory starting from the hypothesis that the order parameter is a pseudo-spin singlet which transforms according to the E1gE_{1g} representation of the D6hD_{6h} point group. We show how to compute the positions of the phase boundaries both when the applied field is in the basal plane and when it is along the c-axis. The experimental phase diagrams as determined by longitudinal sound velocity data can be fit using a single set of parameters. In particular the crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase diagram are reproduced. The former is a result of the magnetic properties of UPt3_3 and their contribution to the free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry. Finally we extend the theory to finite pressure and show that, in contrast to other models, the E1gE_{1g} model explains the observed pressure dependence of the phase boundaries.Comment: RevTex, 29 pages, 18 PostScript figures in a uuencoded, gzipped tar file. PostScript version of paper, tar file of PostScript figures and individual PostScript figures are also available via anonymous ftp at ftp://nym.physics.wisc.edu/anonymou/papers/upt3

    Unconventional Pairing in Heavy Fermion Metals

    Full text link
    The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients are {\it universal}, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures kBT≪γ≪Δ0k_B T \ll \gamma \ll \Delta_0, where γ\gamma is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3_3 thermal conductivity measurements favor an E1gE_{1g} or E2uE_{2u} ground state. Measurements at ultra-low temperatures should distinguish different pairing states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear in the Proceedings of the XXI International Conference on Low Temperature Physics held in Prague, 8-14 August 199
    • …
    corecore