19 research outputs found
Effects of carotenoids on mitochondrial dysfunction
Oxidative stress, an imbalance between pro-oxidant and antioxidant status, favouring the pro-oxidant state is a result of increased production of reactive oxygen species (ROS) or inadequate antioxidant protection. ROS are produced through several mechanisms in cells including during mitochondrial oxidative phosphorylation. Increased mitochondrial-derived ROS are associated with mitochondrial dysfunction, an early event in age-related diseases such as Alzheimer’s diseases (ADs) and in metabolic disorders including diabetes. AD post-mortem investigations of affected brain regions have shown the accumulation of oxidative damage to macromolecules, and oxidative stress has been considered
an important contributor to disease pathology. An increase in oxidative stress, which leads to increased levels of superoxide, hydrogen peroxide and other ROS in a potentially
vicious cycle is both causative and a consequence of mitochondrial dysfunction.
Mitochondrial dysfunction may be ameliorated by molecules with antioxidant capacities that accumulate in mitochondria such as carotenoids. However, the role of carotenoids in
mitigating mitochondrial dysfunction is not fully understood. A better understanding of the role of antioxidants in mitochondrial function is a promising lead towards the development of novel and effective treatment strategies for age-related diseases. This review evaluates and summarises some of the latest developments and insights into the effects
of carotenoids on mitochondrial dysfunction with a focus on the antioxidant properties of carotenoids. The mitochondria-protective role of carotenoids may be key in therapeutic
strategies and targeting the mitochondria ROS is emerging in drug development for age-related diseases
Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq
<p>Abstract</p> <p>Background</p> <p>Glucose-6-Phosphate dehydrogenase (G6PD) is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds.</p> <p>Methods</p> <p>A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T), G6PD Chatham (1003 G→A), G6PD A- (202 G→A), G6PD Aures (143 T→C) and G6PD Cosenza (1376 G→C), as well as the silent 1311 (C→T) mutation.</p> <p>Results</p> <p>Among 580 random Iraqi male Kurds, 63 (10.9%) had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8%) had the G6PD Mediterranean variant and 10 (8.7%) had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5%) uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases.</p> <p>Conclusions</p> <p>The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD Mediterranean and Chatham variants. These results are similar to those reported from neighboring Iran and Turkey and to lesser extent other Mediterranean countries.</p
Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
Lipid (per) oxidation in mitochondria:an emerging target in the ageing process?
Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease
Lymphatic Filariasis in Nigeria; Micro-stratification Overlap Mapping (MOM) as a Prerequisite for Cost-Effective Resource Utilization in Control and Surveillance
Background
Nigeria has a significant burden of lymphatic filariasis (LF) caused by the parasite Wuchereria bancrofti. A major concern to the expansion of the LF elimination programme is the risk of serious adverse events (SAEs) associated with the use of ivermectin in areas co-endemic with Loa filariasis. To better understand this, as well as other factors that may impact on LF elimination, we used Micro-stratification Overlap Mapping (MOM) to highlight the distribution and potential impact of multiple disease interventions that geographically coincide in LF endemic areas and which will impact on LF and vice versa.
Methodology/Principal findings
LF data from the literature and Federal Ministry of Health (FMoH) were collated into a database. LF prevalence distributions; predicted prevalence of loiasis; ongoing onchocerciasis community-directed treatment with ivermectin (CDTi); and long-lasting insecticidal mosquito net (LLIN) distributions for malaria were incorporated into overlay maps using geographical information system (GIS) software. LF was prevalent across most regions of the country. The mean prevalence determined by circulating filarial antigen (CFA) was 14.0% (n = 134 locations), and by microfilaria (Mf) was 8.2% (n = 162 locations). Overall, LF endemic areas geographically coincided with CDTi priority areas, however, LLIN coverage was generally low (<50%) in areas where LF prevalence was high or co-endemic with L. loa.
Conclusions/Significance
The extensive database and series of maps produced in this study provide an important overview for the LF Programme and will assist to maximize existing interventions, ensuring cost effective use of resources as the programme scales up. Such information is a prerequisite for the LF programme, and will allow for other factors to be included into planning, as well as monitoring and evaluation activities given the broad spectrum impact of the drugs used
Corrigendum to "European contribution to the study of ROS : A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]
No abstract available
Corrigendum to “European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)” (Redox Biol. (2017) 13 (94–162)(S2213231717303373)(10.1016/j.redox.2017.05.007))
The authors regret that they have to correct the acknowledgement of the above mentioned publication as follows: This article/publication is based upon work from COST Action BM1203 (EU-ROS), supported by COST (European Cooperation in Science and Technology) which is funded by the Horizon 2020 Framework Programme of the European Union. COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. For further information see www.cost.eu. The authors would like to apologise for any inconvenience caused.This article/publication is based upon work from COST Action
BM1203 (EU-ROS), supported by COST (European Cooperation in
Science and Technology) which is funded by the Horizon 2020
Framework Programme of the European Union. COST (European
Cooperation in Science and Technology) is a funding agency for research
and innovation networks