142 research outputs found

    Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system

    Full text link
    The local density of states (LDOS) of the adsorbate induced two-dimensional electron system (2DES) on n-InAs(110) is studied by low-temperature scanning tunneling spectroscopy. The LDOS exhibits irregular structures with fluctuation lengths decreasing with increasing energy. Fourier transformation reveals that the k-values of the unperturbed 2DES dominate the LDOS, but additional lower k-values contribute significantly. To clarify the origin of the additional k-space intensity, we measure the potential landscape of the same 2DES area with the help of the tip induced quantum dot. This allows to calculate the expected LDOS from the single particle Schroedinger equation and to directly compare it with the measured one. Reasonable correspondance between calculated and measured LDOS is found.Comment: 7 pages, 4 figures, submitted to PR

    Neues aus der Pinguinforschung

    Get PDF

    In situ observation of compressive deformation of an interconnected network of zinc oxide tetrapods

    Get PDF
    Zinc oxide tetrapods have remarkable functional and mechanical properties with potential applications in different fields including nanoelectronic and optoelectronic sensing, functional composites and coatings, as well as energy harvesting and storage. Based on the 3D shape of these microparticles, they can be assembled into highly porous (up to 98%) macroscopic ceramic framework structures that can be utilized as a versatile template for the fabrication of other multi-scaled foam-like materials. Here we investigated the three-dimensional structure of low density interconnected zinc oxide tetrapod networks by high resolution X-ray computed tomography. In situ observations during mechanical loading show inhomogeneous development of anelastic strain (damage) during compression, and homogeneous elastic recovery on unloading. Individual tetrapods are observed to deform by arm rotation to accommodate strain

    Self-Propelled Aero-GaN Based Liquid Marbles Exhibiting Pulsed Rotation on the Water Surface

    Get PDF
    We report on self-propelled rotating liquid marbles fabricated using droplets of alcoholic solution encapsulated in hollow microtetrapods of GaN with hydrophilic free ends of their arms and hydrophobic lateral walls. Apart from stationary rotation, elongated-spheroid-like liquid marbles were found, for the first time, to exhibit pulsed rotation on water surfaces characterized by a threshold speed of rotation, which increased with the weight of the liquid marble while the frequency of pulses proved to decrease. To throw light upon the unusual behavior of the developed self-propelled liquid marbles, we propose a model which takes into account skimming of the liquid marbles over the water surface similar to that inherent to flying water lily beetle and the so-called helicopter effect, causing a liquid marble to rise above the level of the water surface when rotating

    Ethanol Sensing Performances of Zinc-doped Copper Oxide Nano-crystallite Layers

    Get PDF
    The synthesis via chemical solutions (aqueous) (SCS) wet route is a low-temperature and cost-effective growth technique of high crystalline quality oxide semiconductors films. Here we report on morphology, chemical composition, structure and ethanol sensing performances of a device prototype based on zincdoped copper oxide nanocrystallite layer. By thermal annealing in electrical furnace for 30 min at temperatures higher than 550 ˚C, as-deposited zinc doped Cu2O samples are converted to tenorite, ZnxCu1-xOy, (x=1.3wt%) that demonstrate higher ethanol response than sensor structures based on samples treated at 450 ˚C. In case of the specimens after post-growth treatment at 650 ˚C was found an ethanol gas response of about 79 % and 91 % to concentrations of 100 ppm and 500 ppm, respectively, at operating temperature of 400 ˚C in air

    Hierarchical self-entangled carbon nanotube tube networks

    Get PDF
    R.A. gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft (DFG) contract AD183-17-1 as well as in the framework of the GRK 2154 and FOR 1616, and support from the European Comission in the framework of the Graphene FET Flagship. N.M.P. is supported by the European Research Council ERC PoC 2015 SILKENE No. 693670 and by the European Commission H2020 under the Graphene FET Flagship (WP14 “Polymer Composites” No. 696656) and under the FET proactive (“Neurofibres” No. 732344). S.S. acknowledges financial support from SILKENE. This work was partly supported by the Leverhulme Trust project CARBTRIB to S.N.G. We acknowledge financial support by Land Schleswig Holstein within the funding program “Open Access Publikationsfonds”. Furthermore, we thank Heather Cavers for proofreading and correcting the manuscript

    Biomimetic Carbon-Fiber Systems Engineering: A Modular Design Strategy to Generate Biofunctional Composites from Graphene and Carbon Nanofibers

    Get PDF
    electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here we show a novel modular design strategy to engineer biomimetic carbon-fiber based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as 3D sacrificial templates and are infiltrated with carbon nanotube (CNT) or graphene dispersions. Once the CNTs and graphene uniformly coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition (CVD). The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the micro-fibrous scaffolds were tailored with a high porosity (up to 93 %), high Young’s modulus (~0.027 to ~22 MPa), and an electrical conductivity of (~0.1 to ~330 S/m), as well as different surface compositions. Cell viability and fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ±6.95 mg/cm3), so that they not only are able to resemble the ECM structurally, but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon-fiber systems that mimic the extracellular matrix with the additional feature of conductivity.RA gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft under contract FOR1616. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. GrapheneCore2 785219. CS is supported by the European Research Council (ERC StG 336104 CELLINSPIRED, ERC PoC 768740 CHANNELMAT), by the German Research Foundation (RTG 2154, SFB 1261 project B7). MT acknowledges support from the German Academic Exchange Service (DAAD) through a research grant for doctoral candidates (91526555-57048249). We acknowledge funding from EPSRC grants EP/P02534X/1, ERC grant 319277 (Hetero2D) the Royal Academy of Engineering Enterprise Scheme, the Trinity College, Cambridge, and the Isaac Newton Trust

    Wetting Properties of Graphene Aerogels

    Get PDF
    Graphene hydrophobic coatings paved the way towards a new generation of optoelectronic and fluidic devices. Nevertheless, such hydrophobic thin films rely only on graphene non-polar surface, rather than taking advantage of its surface roughness. Furthermore, graphene is typically not self-standing. Differently, carbon aerogels have high porosity, large effective surface area due to their surface roughness, and very low mass density, which make them a promising candidate as a super-hydrophobic material for novel technological applications. However, despite a few works reporting the general super-hydrophobic and lipophilic behavior of the carbon aerogels, a detailed characterization of their wetting properties is still missing, to date. Here, the wetting properties of graphene aerogels are demonstrated in detail. Without any chemical functionalization or patterning of their surface, the samples exhibit a super-lipophilic state and a stationary super-hydrophobic state with a contact angle up to 150 ± 15° and low contact angle hysteresis ≈ 15°, owing to the fakir effect. In addition, the adhesion force of the graphene aerogels in contact with the water droplets and their surface tension are evaluated. For instance, the unique wettability and enhanced liquid absorption of the graphene aerogels can be exploited for reducing contamination from oil spills and chemical leakage accidents

    Optimizing Current Collector Interfaces for Efficient “Anode-Free” Lithium Metal Batteries

    Get PDF
    Current lithium (Li)-metal anodes are not sustainable for the mass production of future energy storage devices because they are inherently unsafe, expensive, and environmentally unfriendly. The anode-free concept, in which a current collector (CC) is directly used as the host to plate Li-metal, by using only the Li content coming from the positive electrode, could unlock the development of highly energy-dense and low-cost rechargeable batteries. Unfortunately, dead Li-metal forms during cycling, leading to a progressive and fast capacity loss. Therefore, the optimization of the CC/electrolyte interface and modifications of CC designs are key to producing highly efficient anode-free batteries with liquid and solid-state electrolytes. Lithiophilicity and electronic conductivity must be tuned to optimize the plating process of Li-metal. This review summarizes the recent progress and key findings in the CC design (e.g. 3D structures) and its interaction with electrolytes

    Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization

    Get PDF
    Nanomaterials for highly selective and sensitive sensors toward specific gas molecules of volatile organic compounds (VOCs) are most important in developing new-generation of detector devices, for example, for biomarkers of diseases as well as for continuous air quality monitoring. Here, we present an innovative preparation approach for engineering sensors, which allow for full control of the dopant concentrations and the nanoparticles functionalization of columnar material surfaces. The main outcome of this powerful design concept lies in fine-tuning the reactivity of the sensor surfaces toward the VOCs of interest. First, nanocolumnar and well-distributed Ag-doped zinc oxide (ZnO:Ag) thin films are synthesized from chemical solution, and, at a second stage, noble nanoparticles of the required size are deposited using a gas aggregation source, ensuring that no percolating paths are formed between them. Typical samples that were investigated are Ag-doped and Ag nanoparticle-functionalized ZnO:Ag nanocolumnar films. The highest responses to VOCs, in particular to (CH3)2CHOH, were obtained at a low operating temperature (250 °C) for the samples synergistically enhanced with dopants and nanoparticles simultaneously. In addition, the response times, particularly the recovery times, are greatly reduced for the fully modified nanocolumnar thin films for a wide range of operating temperatures. The adsorption of propanol, acetone, methane, and hydrogen at various surface sites of the Ag-doped Ag8/ZnO(0001) surface has been examined with the density functional theory (DFT) calculations to understand the preference for organic compounds and to confirm experimental results. The response of the synergistically enhanced sensors to gas molecules containing certain functional groups is in excellent agreement with density functional theory calculations performed in this work too. This new fabrication strategy can underpin the next generation of advanced materials for gas sensing applications and prevent VOC levels that are hazardous to human health and can cause environmental damages
    corecore