1,242 research outputs found

    Molecular Line Profile Fitting with Analytic Radiative Transfer Models

    Full text link
    We present a study of analytic models of starless cores whose line profiles have ``infall asymmetry,'' or blue-skewed shapes indicative of contracting motions. We compare the ability of two types of analytical radiative transfer models to reproduce the line profiles and infall speeds of centrally condensed starless cores whose infall speeds are spatially constant and range between 0 and 0.2 km s-1. The model line profiles of HCO+ (J=1-0) and HCO+ (J=3-2) are produced by a self-consistent Monte Carlo radiative transfer code. The analytic models assume that the excitation temperature in the front of the cloud is either constant (``two-layer'' model) or increases inward as a linear function of optical depth (``hill'' model). Each analytic model is matched to the line profile by rapid least-squares fitting. The blue-asymmetric line profiles with two peaks, or with a blue shifted peak and a red shifted shoulder, can be well fit by the ``HILL5'' model (a five parameter version of the hill model), with an RMS error of 0.02 km s-1. A peak signal to noise ratio of at least 30 in the molecular line observations is required for performing these analytic radiative transfer fits to the line profiles.Comment: 48 pages, 20 figures, accepted for publication in Ap

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    Millimeter and Submillimeter Survey of the R Corona Australis Region

    Full text link
    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12m telescope and the Arizona Radio Observatory 10m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of Carbon Monoxide, HCO+^+ and 870\micron continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01pc over an area of 0.16 pc2^2, with velocity resolution finer than 1 km/s. Mass estimates of the protostar driving the mm-wave emission derived from HCO+^+, dust continuum emission and kinematic techniques point to a young, deeply embedded protostar of \sim0.5-0.75 M_\odot, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 M_\odot of molecular gas with \sim0.5 L_\odot of mechanical luminosity. HCO+^+ lines show the kinematic signature of infall motions as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation and outflow towards this young object.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4

    Full text link
    Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group of highly-embedded young stellar objects in Perseus, that reveal motions of infall, outflow, rotation, and turbulence in the dense gas around its two brightest continuum objects, 4A and 4B. These data have finest angular resolution of approximately 2" (0.0034 pc) and finest velocity resolution of 0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A, providing the least ambiguous evidence for such motions toward low-mass protostellar objects. Outflow motions are probed by bright line wings of H2CO 3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely tracing dense cavity walls. Rotational motions of dense gas are traced by a systematic variation of the N2H+ line velocities, and such variations are found around 4A but not around 4B. Turbulent motions appear reduced with scale, given N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3 than those seen from single-dish observations. Minimum observed line widths of approximately 0.2 km/s provide a new low, upper bound to the velocity dispersion of the parent core to IRAS 4, and demonstrate that turbulence within regions of clustered star formation can be reduced significantly. A third continuum object in the region, 4B', shows no detectable line emission in any of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap

    bíogo: a simple high-performance bioinformatics toolkit for the Go language

    Get PDF
    biogo is a framework designed to ease development and maintenance of computationally intensive bioinformatics applications (Kortschak and Adelson 2014). The library is written in the Go programming language, a garbage-collected, strictly typed compiled language with built in support for concurrent processing, and performance comparable to C and Java. It provides a variety of data types and utility functions to facilitate manipulation and analysis of large scale genomic and other biological data. biogo uses a concise and expressive syntax, lowering the barriers to entry for researchers needing to process large data sets with custom analyses while retaining computational safety and ease of code review. We believe biogo provides an excellent environment for training and research in computational biology because of its combination of strict typing, simple and expressive syntax, and high performance.R. Daniel Kortschak, Josh Bleecher Snyder, Manolis Maragkakis, and David L. Adelso

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    Accidental Pinhole and Pinspeck Cameras

    Get PDF
    We identify and study two types of “accidental” images that can be formed in scenes. The first is an accidental pinhole camera image. The second class of accidental images are “inverse” pinhole camera images, formed by subtracting an image with a small occluder present from a reference image without the occluder. Both types of accidental cameras happen in a variety of different situations. For example, an indoor scene illuminated by natural light, a street with a person walking under the shadow of a building, etc. The images produced by accidental cameras are often mistaken for shadows or interreflections. However, accidental images can reveal information about the scene outside the image, the lighting conditions, or the aperture by which light enters the scene.National Science Foundation (U.S.) (CAREER Award 0747120)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933)National Science Foundation (U.S.) (CGV 1111415)National Science Foundation (U.S.) (CGV 0964004

    Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis

    Get PDF
    Astragalus membranaceus, also known as Huangqi in China, is one of the most widely used medicinal herbs in Traditional Chinese Medicine. Traditional Chinese Medicine formulations from Astragalus membranaceus have been used to treat a wide range of illnesses, such as cardiovascular disease, type 2 diabetes, nephritis and cancers. Pharmacological studies have shown that immunomodulating, anti-hyperglycemic, anti-inflammatory, antioxidant and antiviral activities exist in the extract of Astragalus membranaceus. Therefore, characterising the biosynthesis of bioactive compounds in Astragalus membranaceus, such as Astragalosides, Calycosin and Calycosin-7-O-beta-D-glucoside, is of particular importance for further genetic studies of Astragalus membranaceus. In this study, we reconstructed the Astragalus membranaceus full-length transcriptomes from leaf and root tissues using PacBio Iso-Seq long reads. We identified 27 975 and 22 343 full-length unique transcript models in each tissue respectively. Compared with previous studies that used short read sequencing, our reconstructed transcripts are longer, and are more likely to be full-length and include numerous transcript variants. Moreover, we also re-characterised and identified potential transcript variants of genes involved in Astragalosides, Calycosin and Calycosin-7-O-beta-D-glucoside biosynthesis. In conclusion, our study provides a practical pipeline to characterise the full-length transcriptome for species without a reference genome and a useful genomic resource for exploring the biosynthesis of active compounds in Astragalus membranaceus.Jun Li, Yuka Harata-Lee, Matthew D Denton, Qianjin Feng, Judith R Rathjen, Zhipeng Qu, David L Adelso

    Microgeometry capture using an elastomeric sensor

    Get PDF
    We describe a system for capturing microscopic surface geometry. The system extends the retrographic sensor [Johnson and Adelson 2009] to the microscopic domain, demonstrating spatial resolution as small as 2 microns. In contrast to existing microgeometry capture techniques, the system is not affected by the optical characteristics of the surface being measured---it captures the same geometry whether the object is matte, glossy, or transparent. In addition, the hardware design allows for a variety of form factors, including a hand-held device that can be used to capture high-resolution surface geometry in the field. We achieve these results with a combination of improved sensor materials, illumination design, and reconstruction algorithm, as compared to the original sensor of Johnson and Adelson [2009].National Science Foundation (U.S.) (Grant 0739255)National Institutes of Health (U.S.) (Contract 1-R01-EY019292-01
    corecore