7 research outputs found

    "Smart" molecular engineering of metallomesogens based on Pt(II) terpyridine coordination complexes

    Get PDF
    A series of ionic tetracoordinated Pt(II) complexes based on terpyridine ligand were synthesized and characterized. Their chemical structures were engineered by using counterions of different coordination strengths and dimensions, namely non-coordinating BF4, weakly coordinating bulky gallate units, and small and strongly coordinating chlorine (Cl). The complexes containing lipophilic gallate units exhibit low temperature liquid crystalline properties. The mesomorphic properties were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction studies (SWAXS). Photophysical properties were determined in solution and condensed states

    Emissive Zn(II) metallomesogen based on tridentate terpyridine ligand

    Get PDF
    A low temperature liquid crystal based on luminescent terpyridine Zn(II) complex is presented. The induction of the mesomorphic properties was achieved using a lipophilic gallate unit as ancillary ligands. The mesomorphic properties were investigated by polarised optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TA) and X-ray scattering (SWAXS) of bulk materials, while the optical properties of the complex were investigated in solution and in condensed liquid crystalline states

    Role of the Environment Polarity on the Photophysical Properties of Mesogenic Hetero-Polymetallic Complexes

    No full text
    New hetero-polynuclear coordination complexes based on a pentacoordinated Zn(II) metal center with tridentate terpyridine-based ligands and monoanionic gallates functionalized with long alkyl chains containing ferrocene units were designed, synthesized and characterized using spectroscopic and analytical methods. The complexes are mesomorphic, exhibiting columnar hexagonal mesophases. The photophysical properties in a solution and in an ordered condensed state were accurately investigated and the influence of the polarity of the solvent was evidenced

    Design of Nanostructured Hybrid Electrodes Based on a Liquid Crystalline Zn(II) Coordination Complex-Carbon Nanotubes Composition for the Specific Electrochemical Sensing of Uric Acid

    No full text
    A metallomesogen based on an Zn(II) coordination complex was employed as precursor to obtain a complex matrix nanoplatform for the fabrication of a high-performance electrochemical hybrid sensor. Three representative paste electrodes, which differ by the weight ratio between Zn(II) metallomesogen and carbon nanotubes (CNT), i.e., PE_01, PE_02 and PE_03, were obtained by mixing the materials in different amounts. The composition with the largest amount of CNT with respect to Zn complex, i.e., PE_03, gives the best electrochemical signal for uric acid detection by cyclic voltammetry in an alkaline medium. The amphiphilic structure of the Zn(II) coordination complex likely induces a regular separation between the metal centers favoring the redox system through their reduction, followed by stripping, and is characterized by enhanced electrocatalytic activity towards uric acid oxidation. The comparative detection of uric acid between the PE_03 paste electrode and the commercial zinc electrode demonstrated the superiority of the former, and its great potential for the development of advanced electrochemical detection of uric acid. Advanced electrochemical techniques, such as differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV), allowed for the highly sensitive detection of uric acid in aqueous alkaline solutions. In addition, a good and fast amperometric signal for uric acid detection was achieved by multiple-pulsed amperometry, which was validated by urine analysis

    Pentacoordinated Liquid Crystalline Zn(II) Complex Organized in Smectic Mesophase: Synthesis, Structural and Electrochemical Properties

    No full text
    The synthesis and structural characterization of a new liquid crystalline coordination complex based on pentacoordinated Zn(II) metal centre with the coordination fulfilled by the tridentate chelating N^N^N 2,2′;6′,2″-terpyridine ligand and two monoanionic gallates decorated with several long alkyl chains is described. The mesomorphic properties were accurately investigated by small- and wide-angle X-ray scattering studies. Despite the bulky coordination around the metal centre, the complex self-organizes into a smectic phase and, based on the structural and geometrical parameters, a model for the supramolecular organization in the liquid crystalline phase is proposed. Electrochemical investigations showed the importance of the molecular structure of the coordination complex in enhancing its aqueous sensing capacities: the bulky organic ligands form an organic shell separating the metal centres and favouring the redox system through their reduction followed by stripping

    Pentacoordinated Liquid Crystalline Zn(II) Complex Organized in Smectic Mesophase: Synthesis, Structural and Electrochemical Properties

    No full text
    The synthesis and structural characterization of a new liquid crystalline coordination complex based on pentacoordinated Zn(II) metal centre with the coordination fulfilled by the tridentate chelating N^N^N 2,2′;6′,2″-terpyridine ligand and two monoanionic gallates decorated with several long alkyl chains is described. The mesomorphic properties were accurately investigated by small- and wide-angle X-ray scattering studies. Despite the bulky coordination around the metal centre, the complex self-organizes into a smectic phase and, based on the structural and geometrical parameters, a model for the supramolecular organization in the liquid crystalline phase is proposed. Electrochemical investigations showed the importance of the molecular structure of the coordination complex in enhancing its aqueous sensing capacities: the bulky organic ligands form an organic shell separating the metal centres and favouring the redox system through their reduction followed by stripping
    corecore