347 research outputs found

    X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North

    Full text link
    We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble Deep Field North (HDF-N) region. By excluding all sources with significant detected X-ray emission in the 2 Ms Chandra observation we are able to examine the properties of galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is \~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between X-ray emission and rest-frame UV emission. A correlation between the ratio of X-ray-to-UV emission and UV colour is also seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray emission offers a view of star formation regions that is relatively unaffected by extinction, results such as these can be used to evaluate the effects of dust on the UV emission from high-z galaxies. For instance we derive a relationship for estimating UV attenuation corrections as a function of colour excess. The observed relation is inconsistent with the Calzetti et al. (2000) reddening law which over predicts the range in UV attenuation corrections by a factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).Comment: 10 pages, 7 figures, accepted for publication in MNRA

    The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3

    Get PDF
    We present the results of rest-frame UV spectroscopic observations of a sample of 14 z ~ 3 star-forming galaxies in the SSA 22a field. These spectra are characterized by unprecedented depth in the Lyman continuum region. For the first time, we have detected escaping ionizing radiation from individual galaxies at high redshift, with 2 of the 14 objects showing significant emission below the Lyman limit. We also measured the ratio of emergent flux density at 1500 Å to that in the Lyman continuum region, for the individual detections (C49 and D3) and the sample average. If a correction for the average IGM opacity is applied to the spectra of the objects C49 and D3, we find f_(1500)/f_(900,corr,C49) = 4.5 and f_(1500)/f_(900,corr,D3) = 2.9. The average emergent flux density ratio in our sample is = 22, implying an escape fraction ~4.5 times lower than inferred from the composite spectrum from Steidel and coworkers. If this new estimate is representative of LBGs, their contribution to the metagalactic ionizing radiation field is J_ν(900) ~ 2.6 × 10^(-22) ergs s^(-1) cm^(-2) Hz^(-1) sr^(-1), comparable to the contribution of optically selected quasars at the same redshift. The sum of the contributions from galaxies and quasars is consistent with recent estimates of the level of the ionizing background at z ~ 3, inferred from the H I Lyα forest optical depth. There is significant variance among the emergent far-UV spectra in our sample, yet the factors controlling the detection or nondetection of Lyman continuum emission from galaxies are not well determined. Because we do not yet understand the source of this variance, significantly larger samples will be required to obtain robust constraints on the galaxy contribution to the ionizing background at z ~ 3 and beyond

    The Kinematics of Morphologically Selected z~2 Galaxies in the GOODS-N Field

    Full text link
    We present near-IR spectra of H-alpha emission from 13 galaxies at z~2 in the GOODS-N field. The galaxies were selected primarily because they appear to have elongated morphologies, and slits were aligned with the major axes (as determined from the rest-frame UV emission) of 11 of the 13. If the galaxies are elongated because they are highly inclined, alignment of the slit and major axis should maximize the observed velocity and reveal velocity shear, if present. In spite of this alignment, we see spatially resolved velocity shear in only two galaxies. We show that the seeing makes a large difference in the observed velocity spread of a tilted emission line, and use this information to place limits on the velocity spread of the ionized gas of the galaxies in the sample: we find that all 13 have v_{0.5} < 110 km/s, where v_{0.5} is the velocity shear (half of the velocity range of a tilted emission line) that would be observed under our best seeing conditions of ~0.5". When combined with previous work, our data also indicate that aligning the slit along the major axis does not increase the probability of observing a tilted emission line. We then focus on the one-dimensional velocity dispersion \sigma, which is much less affected by the seeing, and see that the elongated subsample exhibits a significantly lower velocity dispersion than galaxies selected at random from our total H-alpha sample, not higher as one might have expected. We also see some evidence that the elongated galaxies are less reddened than those randomly selected using only UV colors. Both of these results are counter to what would be expected if the elongated galaxies were highly inclined disks. It is at least as likely that the galaxies' elongated morphologies are due to merging subunits.Comment: 9 pages, 5 figures. Accepted for publication in Ap

    Evidence for Solar Metallicities in Massive Star-forming Galaxies at z>~2

    Full text link
    We present results of near-IR spectroscopic measurements of 7 star-forming galaxies at 2.1<z<2.5. Drawn from a large spectroscopic survey of galaxies photometrically pre-selected by their U_nGR colors to lie at z~2, these galaxies were chosen for their bright rest-frame optical luminosities (K_s<=20.0). Most strikingly, the majority of the sample of 7 galaxies exhibit [NII]/Ha nebular emission line ratios indicative of at least solar HII region metallicities, at a lookback time of 10.5 Gyr. The broadband colors of the K_s-bright sample indicate that most have been forming stars for more than a Gyr at z~2, and have already formed stellar masses in excess of 10^11 Msun. The descendants of these galaxies in the local universe are most likely metal-rich and massive spiral and elliptical galaxies, while plausible progenitors for them can be found among the population of z~3 Lyman Break Galaxies. While the K_s-bright z~2 galaxies appear to be highly evolved systems, their large Ha luminosities and uncorrected Ha star-formation rates of 24-60 Msun/yr indicate that active star formation is still ongoing. The luminous UV-selected objects presented here comprise more than half of the high-redshift (z>1.5) tails of current K-band-selected samples such as the K20 and Gemini Deep Deep surveys.Comment: 15 pages including 5 figures. Accepted for publication in Ap
    • …
    corecore