3 research outputs found
Flexibility of in vitro cortical circuits influences resilience from microtrauma
BackgroundSmall clusters comprising hundreds to thousands of neurons are an important level of brain architecture that correlates single neuronal properties to fulfill brain function, but the specific mechanisms through which this scaling occurs are not well understood. In this study, we developed an in vitro experimental platform of small neuronal circuits (islands) to probe the importance of structural properties for their development, physiology, and response to microtrauma.MethodsPrimary cortical neurons were plated on a substrate patterned to promote attachment in clusters of hundreds of cells (islands), transduced with GCaMP6f, allowed to mature until 10–13 days in vitro (DIV), and monitored with Ca2+ as a non-invasive proxy for electrical activity. We adjusted two structural factors–island size and cellular density–to evaluate their role in guiding spontaneous activity and network formation in neuronal islands.ResultsWe found cellular density, but not island size, regulates of circuit activity and network function in this system. Low cellular density islands can achieve many states of activity, while high cellular density biases islands towards a limited regime characterized by low rates of activity and high synchronization, a property we summarized as “flexibility.” The injury severity required for an island to lose activity in 50% of its population was significantly higher in low-density, high flexibility islands.ConclusionTogether, these studies demonstrate flexible living cortical circuits are more resilient to microtrauma, providing the first evidence that initial circuit state may be a key factor to consider when evaluating the consequences of trauma to the cortex
Posture Systematically Alters Ear-Canal Reflectance and DPOAE Properties
Several studies have demonstrated that the auditory system is sensitive to changes in posture, presumably through changes in intracranial pressure (ICP) that in turn alter the intracochlear pressure, which affects the stiffness of the middle-ear system. This observation has led to efforts to develop an ear-canal based noninvasive diagnostic measure for monitoring ICP, which is currently monitored invasively via access through the skull or spine. Here, we demonstrate the effects of postural changes, and presumably ICP changes, on distortion product otoacoustic emissions (DPOAE) magnitude, DPOAE angle, and power reflectance. Measurements were made on 12 normal-hearing subjects in two postural positions: upright at 90 degrees and tilted at −45 degrees to the horizontal. Measurements on each subject were repeated five times across five separate measurement sessions. All three measures showed significant changes (p \u3c 0.001) between upright and tilted for frequencies between 500 and 2000 Hz, and DPOAE angle changes were significant at all measured frequencies (500–4000 Hz). Intrasubject variability, assessed via standard deviations for each subject’s multiple measurements, were generally smaller in the upright position relative to the tilted position