43 research outputs found
Assessment of Emergency Obstetric Care Services in Ibadan- Ibarapa Health Zone, Oyo State, Nigeria
Nigeria’s high maternal mortality has been attributed to poor utilization of obstetric care services to handle complications of pregnancy and childbirth. But how available are standard emergency obstetric care services? This facility based cross sectional study assessed the availability and accessibility of emergency obstetric care services in Oyo State, Nigeria. Using a multi-stage sampling technique, 61 primary and 10 secondary health care facilities were selected. Data was collected using a structured questionnaire from the heads of the maternity units. Spatial mapping of the facilities was also produced. Results showed availability of comprehensive emergency obstetric care (CEmOC) facilities (0-3.9/500,000 population) was adequate, however a gross lack of basic emergency obstetric care (BEmOC) facilities (0-5.4/500,000 population) was observed, where available, they were clustered in the urban settlements. Prompt action needs to be taken to upgrade basic emergency obstetric care facilities accessible to the larger rural population dwellers to improve maternal health indices. Keywords: Maternal Mortality, Comprehensive, Basic, Emergency obstetric car
Estimating the prevalence of COPD in an African country:evidence from southern Nigeria
# BACKGROUND: Though several environmental and demographic factors would suggest a high burden of chronic obstructive pulmonary disease (COPD) in most African countries, there is insufficient country-level synthesis to guide public health policy. # METHODS: A systematic search of MEDLINE, EMBASE, Global Health and African Journals Online identified studies reporting the prevalence of COPD in Nigeria. We provided a detailed synthesis of study characteristics, and overall median and interquartile range (IQR) of COPD prevalence in Nigeria by case definitions (spirometry or non-spirometry). # RESULTS: Of 187 potential studies, eight studies (6 spirometry and 2 non-spirometry) including 4,234 Nigerians met the criteria. From spirometry assessment, which is relatively internally consistent, the median prevalence of COPD in Nigeria was 9.2% (interquartile range, IQR: 7.6–10.0), compared to a lower prevalence (5.1%, IQR: 2.2–15.4) from studies based on British Medical Research Council (BMRC) criteria or doctor’s diagnosis. The median prevalence of COPD was almost the same among rural (9.5%, IQR: 7.6–10.3) and urban dwellers (9.0%, IQR: 5.3–9.3) from spirometry studies. # CONCLUSIONS: A limited number of studies on COPD introduces imprecision in prevalence estimates and presents concerns on the level of response available across different parts of Nigeria, and indeed across many countries in sub-Saharan Africa
Estimating the prevalence of overweight and obesity in Nigeria in 2020: a systematic review and meta-analysis
Background
Targeted public health response to obesity in Nigeria is relatively low due to limited epidemiologic understanding. We aimed to estimate nationwide and sub-national prevalence of overweight and obesity in the adult Nigerian population.
Methods
MEDLINE, EMBASE, Global Health, and Africa Journals Online were systematically searched for relevant epidemiologic studies in Nigeria published on or after 01 January 1990. We assessed quality of studies and conducted a random-effects meta-analysis on extracted crude prevalence rates. Using a meta-regression model, we estimated the number of overweight and obese persons in Nigeria in the year 2020.
Results
From 35 studies (n = 52,816), the pooled crude prevalence rates of overweight and obesity in Nigeria were 25.0% (95% confidence interval, CI: 20.4–29.6) and 14.3% (95% CI: 12.0–15.5), respectively. The prevalence in women was higher compared to men at 25.5% (95% CI: 17.1–34.0) versus 25.2% (95% CI: 18.0–32.4) for overweight, and 19.8% (95% CI: 3.9–25.6) versus 12.9% (95% CI: 9.1–16.7) for obesity, respectively. The pooled mean body mass index (BMI) and waist circumference were 25.6 kg/m2 and 86.5 cm, respectively. We estimated that there were 21 million and 12 million overweight and obese persons in the Nigerian population aged 15 years or more in 2020, accounting for an age-adjusted prevalence of 20.3% and 11.6%, respectively. The prevalence rates of overweight and obesity were consistently higher among urban dwellers (27.2% and 14.4%) compared to rural dwellers (16.4% and 12.1%).
Conclusions
Our findings suggest a high prevalence of overweight and obesity in Nigeria. This is marked in urban Nigeria and among women, which may in part be due to widespread sedentary lifestyles and a surge in processed food outlets, largely reflective of a trend across many African settings
Tobacco use amongst out of school adolescents in a Local Government Area in Nigeria
Abstract Introduction Out-of-school adolescents are often neglected when planning for tobacco prevention programmes whereas they are more vulnerable. Few studies exist in Nigeria about their pattern of tobacco use to serve as the basis for effective policy formulation. Method A sub sample of 215 out of school adolescents was analyzed from a descriptive cross sectional study on psychoactive substance use amongst youths in two communities in a Local Government Area in Nigeria which used a multi-stage sampling technique. Results Males were 53% and females 47%. Only 20.5% had ever used tobacco while 11.6% were current users. Males accounted for 60% of current users compared to 40% amongst females. Of current users, 84% believed that tobacco is not harmful to health. In addition, the two important sources of introduction to tobacco use were friends 72% and relatives 20%. Use of tobacco amongst significant others were: friends 27%, fathers 8.0%, relatives 4.2% and mothers 0.5%. The most common sources of supply were motor parks 52% and friends 16%. Conclusion The study showed that peer influence is an important source of introduction to tobacco use while selling of tobacco to adolescents in youth aggregation areas is common. We advocate for a theory based approach to designing an appropriate health education intervention targeted at assisting adolescents in appreciating the harmful nature of tobacco use in this locality. A point-of-sale restriction to prevent adolescent access to tobacco in youth aggregation areas within the context of a comprehensive tobacco control policy is also suggested. However, more research would be needed for an in-depth understanding of the tobacco use vulnerability of this group of adolescents.Peer Reviewe
a systematic analysis for the Global Burden of Disease Study 2021
Funding Information: Research reported in this publication was supported by the Bill & Melinda Gates Foundation (OPP1152504); Queensland Department of Health, Australia; UK Department of Health and Social Care; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; and the New Zealand Ministry of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the US Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. This study uses a dataset provided by European Centre for Disease Prevention and Control (ECDC) based on data provided by WHO and Ministries of Health from the affected countries. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the ECDC. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging, and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. Health Behaviour in School-Aged Children (HBSC) is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997\u201398, 2001\u201302, 2005\u201306, and 2009\u201310 surveys was Candace Currie and the Data Bank Manager for the 1997\u201398 survey was Bente Wold, whereas for the following survey Oddrun Samda was the databank manager. A list of principal investigators in each country can be found at http://www.hbsc.org. Parts of this material are based on data and information provided by the Canadian institute for Health Information. However, the analyses, conclusions, opinions and statements expressed herein are those of the author and not those of the Canadian Institute for Health information. The data reported here have been supplied by the US Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. The data used in this paper come from the 2009\u201310 Ghana Socioeconomic Panel Study Survey which is a nationally representative survey of over 5,000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana, and the Economic Growth Centre (EGC) at Yale University. It was funded by the Economic Growth Center. At the same time, ISSER and the EGC are not responsible for the estimations reported by the analyst(s). The harmonised dataset was downloaded from the Global Dietary Database (GDD) website ( https://www.globaldietarydatabase.org/). The Canadian Community Health Survey - Nutrition (CCHS-Nutrition), 2015 is available online ( https://www.globaldietarydatabase.org/management/microdata-surveys/650). The harmonisation of the original dataset was performed by GDD. The data was adapted from Statistics Canada, Canadian Community Health Survey: Public Use Microdata File, 2015/2016 (Statistics Canada. CCHS-Nutrition, 2015); this does not constitute an endorsement by Statistics Canada of this product. The data is used under the terms of the Statistics Canada Open Licence (Statistics Canada. Statistics Canada Open Licence. https://www.statcan.gc.ca/eng/reference/licence). The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law - 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The results and conclusions are mine and not those of Eurostat, the European Commission, or any of the national statistical authorities whose data have been used. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study it conducted with support from the Bill & Melinda Gates Foundation. This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4, 5 and 6 (dois: 10.6103/SHARE.w1.611,10.6103/SHARE.w2.611, 10.6103/SHARE.w3.611, 10.6103/SHARE.w4.611, 10.6103/SHARE.w5.611, 10.6103/SHARE.w6.611), see B\u00F6rsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006- 028812) and FP7 (SHARE-PREP: N\u00B0211909, SHARE-LEAP: N\u00B0227822, SHARE M4: N\u00B0261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see www.share-project.org). This paper uses data from the Algeria - Setif and Mostaganem 2003 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Algeria 2016-2017 STEPS survey, implemented by Ministry of Health (Algeria) with the support of WHO. This paper uses data from the American Samoa 2004 STEPS survey, implemented by Department of Health (American Samoa) and Monash University (Australia) with the support of WHO. This paper uses data from the Armenia 2016 STEPS survey, implemented by Ministry of Health (Botswana) with the support of WHO. This paper uses data from the Azerbaijan 2017 STEPS survey, implemented by Ministry of Health (Azerbaijan) with the support of WHO. This paper uses data from the Bangladesh 2018 STEPS survey, implemented by Ministry of Health and Family Welfare (Bangladesh) with the support of WHO. This paper uses data from the Barbados 2007 STEPS survey, implemented by Ministry of Health (Barbados) with the support of WHO. This paper uses data from the Belarus 2016-2017 STEPS survey, implemented by Republican Scientific and Practical Center of Medical Technologies, Informatization, Management and Economics of Public Health (Belarus) with the support of WHO. This paper uses data from the Benin - Littoral 2007 STEPS survey, the Benin 2008 STEPS survey, and the Benin 2015 STEPS survey, implemented by Ministry of Health (Benin) with the support of WHO. This paper uses data from the Bhutan - Thimphu 2007 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of WHO. This paper uses data from the Bhutan 2014 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of the World Health Organization. This paper uses data from the Botswana 2014 STEPS survey, implemented by Ministry of Health (Armenia), National Institute of Health with the support of WHO. This paper uses data from the Brunei 2015-2016 STEPS survey, implemented by Ministry of Health (Brunei) with the support of WHO. This paper uses data from the Cambodia 2010 STEPS survey, implemented by Ministry of Health (Cambodia) with the support of WHO. This paper uses data from the Cameroon 2003 STEPS survey, implemented by Health of Populations in Transition (HoPiT) Research Group (Cameroon) and Ministry of Public Health (Cameroon) with the support of WHO. This paper uses data from the Cape Verde 2007 STEPS survey, implemented by Ministry of Health, National Statistics Office with the support of WHO. This paper uses data from the Central African Republic - Bangui 2010 STEPS survey and Central African Republic - Bangui and Ombella M'Poko 2016 STEPS survey, implemented by Ministry of Health and Population (Central African Republic) with the support of WHO. This paper uses data from the Comoros 2011 STEPS survey, implemented by Ministry of Health (Comoros) with the support of WHO. This paper uses data from the Congo - Brazzaville 2004 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Cook Islands 2003\u20132004 survey and Cook Islands 2013\u20132015 STEPS survey, implemented by Ministry of Health (Cook Islands) with the support of WHO. This paper uses data from the Eritrea 2010 STEPS survey, implemented by Ministry of Health (Eritrea) with the support of WHO. This paper uses data from the Fiji 2002 STEPS survey, implemented by Fiji School of Medicine, Menzies Center for Population Health Research, University of Tasmania (Australia), Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Fiji 2011 STEPS survey, implemented by Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Georgia 2016 STEPS survey, implemented by National Center for Disease Control and Public Health (Georgia) with the support of WHO. This paper uses data from the Ghana - Greater Accra Region 2006 STEPS survey, implemented by Ghana Health Service with the support of WHO. This paper uses data from the Guniea 2009 STEPS survey, implemented by Ministry of Public Health and Hygiene (Guinea) with the support of WHO. This paper uses data from the Guyana 2016 STEPS survey, implemented by Ministry of Health (Guyana) with the support of WHO. This paper uses data from the Iraq 2015 STEPS survey, implemented by Ministry of Health (Iraq) with the support of WHO. This paper uses data from the Kenya 2015 STEPS survey, implemented by Kenya National Bureau of Statistics, Ministry of Health (Kenya) with the support of WHO. This paper uses data from the Kiribati 2004\u20132006 STEPS survey and the Kiribati 2016 survey, implemented by Ministry of Health and Medical Services (Kiribati) with the support of WHO. This paper uses data from the Kuwait 2006 STEPS survey and the Kuwait 2014 STEPS survey, implemented by Ministry of Health (Kuwait) with the support of WHO. This paper uses data from the Kyrgyzstan 2013 STEPS survey, implemented by Ministry of Health (Kyrgyzstan) with the support of WHO. This paper uses data from the Laos 2013 STEPS survey, implemented by Ministry of Health (Laos) with the support of WHO. This paper uses data from the Lebanon 2016-2017 STEPS survey, implemented by Ministry of Public Health (Lebanon) with the support of WHO. This paper uses data from the Lesotho 2012 STEPS survey, implemented by Ministry of Health and Social Welfare (Lesotho) with the support of WHO. This paper uses data from the Liberia 2011 STEPS survey, implemented by Ministry of Health and Social Welfare (Liberia) with the support of WHO. This paper uses data from the Libya 2009 STEPS survey, implemented by Secretariat of Health and Environment (Libya) with the support of WHO. This paper uses data from the Malawi 2009 STEPS survey and Malawi 2017 STEPS survey, implemented by Ministry of Health (Malawi) with the support of WHO. This paper uses data from the Mali 2007 STEPS survey, implemented by Ministry of Health (Mali) with the support of WHO. This paper uses data from the Marshall Islands 2002 STEPS survey and the Marshall Islands 2017-2018 STEPS survey, implemented by Ministry of Health (Marshall Islands) with the support of WHO. This paper uses data from the Mauritania- Nouakchott 2006 STEPS survey, implemented by Ministry of Health (Mauritania) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2006 STEPS survey, implemented by Ministry of Health (Palestine) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2016 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2002 STEPS survey, implemented by Centre for Physical Activity and Health, University of Sydney (Australia), Department of Health and Social Affairs (Micronesia), Fiji School of Medicine, Micronesia Human Resources Development Center, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2008 STEPS survey, implemented by FSM Department of Health and Social Affairs, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Yap 2009 STEPS survey, implemented by Ministry of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia- Kosrae 2009 STEPS survey, implemented by FSM Department of Health and Social Affairs with the support of WHO. This paper uses data from the Moldova 2013 STEPS survey, implemented by Ministry of Health (Moldova) with the support of WHO. This paper uses data from the Mongolia 2005 STEPS survey, the Mongolia 2009 STEPS survey, and the Mongolia 2013 STEPS survey, implemented by Ministry of Health (Mongolia) with the support of WHO. This paper uses data from the Morocco 2017 STEPS survey, implemented by Ministry of Health (Morocco) with the support of WHO. This paper uses data from the Mozambique 2005 STEPS survey, implemented by Ministry of Health (Mozambique) with the support of WHO. This paper uses data from the Myanmar 2014 STEPS survey, implemented by Ministry of Health (Myanmar) with the support of WHO. This paper uses data from the Nauru 2004 STEPS survey and the Nauru 2015\u20132016 STEPS survey, implemented by Ministry of Health (Nauru) with the support of WHO. This paper uses data from the Niger 2007 STEPS survey, implemented by Ministry of Health (Niger) with the support of WHO. This paper uses data from the Palau 2011-2013 STEPS survey and the Palau 2016 STEPS survey, implemented by Ministry of Health (Palau) with the support of WHO. This paper uses data from the Palestine 2010-2011 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Qatar 2012 STEPS survey, implemented by Supreme Council of Health (Qatar) with the support of WHO. This paper uses data from the Rwanda 2012-2013 STEPS survey, implemented by Ministry of Health (Rwanda) with the support of WHO. This paper uses data from the Samoa 2002 STEPS survey and the Samoa 2013 STEPS survey, implemented by Ministry of Health (Samoa) with the support of WHO. This paper uses data from the Sao Tome and Principe 2008 STEPS survey, implemented by Ministry of Health (Sao Tome and Principe) with the support of WHO. This paper uses data from the Seychelles 2004 STEPS survey, implemented by Ministry of Health (Seychelles) with the support of WHO. This paper uses data from the Solomon Islands 2005\u20132006 STEPS survey and the Solomon Islands 2015 STEPS survey, implemented by Ministry of Health and Medical Services (Solomon Islands) with the support of WHO. This paper uses data from the Sri Lanka 2014\u20132015 STEPS survey, implemented by Ministry of Health (Sri Lanka) with the support of WHO. This paper uses data from the Sudan 2016 STEPS survey, implemented by Ministry of Health (Sudan) with the support of WHO. This paper uses data from the Swaziland 2007 STEPS survey and the Swaziland 2014 STEPS survey, implemented by Ministry of Health (Swaziland) with the support of WHO. This paper uses data from the Tajikistan 2016 STEPS survey, implemented by Ministry of Health (Tajikistan) with the support of WHO. This paper uses data from the Tanzania - Zanzibar 2011 STEPS survey, implemented by Ministry of Health (Zanzibar) with the support of WHO. This paper uses data from the Tanzania 2012 STEPS survey, implemented by National Institute for Medical Research (Tanzania) with the support of WHO. This paper uses data from the Timor-Leste 2014 STEPS survey, implemented by Ministry of Health (Timor-Leste) with the support of WHO. This paper uses data from the Togo 2010\u20132011 STEPS survey, implemented by Ministry of Health (Togo) with the support of WHO. This paper uses data from the Tokelau 2005 STEPS survey, implemented by Tokelau Department of Health, Fiji School of Medicine with the support of WHO. This paper uses data from the Tonga 2004 STEPS survey and the Tonga 2011\u20132012 STEPS survey, implemented by Ministry of Health (Tonga) with the support of WHO. This paper uses data from the Tuvalu 2015 STEPS survey, implemented by Ministry of Health (Tuvalu), with the support of WHO. This paper uses data from the Uganda 2014 STEPS survey, implemented by Ministry of Health (Uganda) with the support of WHO. This paper uses data from the Uruguay 2006 STEPS survey and the Uruguay 2013-2014 STEPS survey, implemented by Ministry of Health (Uruguay) with the support of WHO. This paper uses data from the Vanuatu 2011 STEPS survey, implemented by Ministry of Health (Vanuatu) with the support of WHO. This paper uses data from the Viet Nam 2009 STEPS survey and the Viet Nam 2015 STEPS survey, implemented by Ministry of Health (Viet Nam) with the support of WHO. This paper uses data from the Virgin Islands, British 2009 STEPS survey, implemented by Ministry of Health and Social Development (British Virgin Islands) with the support of WHO. This paper uses data from the Zambia - Lusaka 2008 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This paper uses data from the Zambia 2017 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This research used data from the Chile National Health Survey 2003, 2009\u201310, and 2016\u201317. The authors are grateful to the Ministry of Health, survey copyright owner, for allowing them to have the database. All results of the study are those of the author and in no way committed to the Ministry. This research used information from the Health Surveys for epidemiological surveillance of the Undersecretary of Public Health. The authors thank the Ministry of Health of Chile, having allowed them to have access to the database. All the results obtained from the study or research are the responsibility of the authors and in no way compromise that institution. This research uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, USA ( [email protected]). No direct support was received from grant P01-HD31921 for this analysis. This study has been realised using the data collected by the Swiss Household Panel (SHP), which is based at the Swiss Centre of Expertise in the Social Sciences FORS. The project is financed by the Swiss National Science Foundation. We thank the Russia Longitudinal Monitoring Survey, RLMS-HSE, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill, and the Institute of Sociology RAS for making these data available. Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations. Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-se
Recommended from our members
Testing the generalizability of ancestry-specific polygenic risk scores to predict prostate cancer in sub-Saharan Africa
Background
Genome-wide association studies do not always replicate well across populations, limiting the generalizability of polygenic risk scores (PRS). Despite higher incidence and mortality rates of prostate cancer in men of African descent, much of what is known about cancer genetics comes from populations of European descent. To understand how well genetic predictions perform in different populations, we evaluated test characteristics of PRS from three previous studies using data from the UK Biobank and a novel dataset of 1298 prostate cancer cases and 1333 controls from Ghana, Nigeria, Senegal, and South Africa.
Results
Allele frequency differences cause predicted risks of prostate cancer to vary across populations. However, natural selection is not the primary driver of these differences. Comparing continental datasets, we find that polygenic predictions of case vs. control status are more effective for European individuals (AUC 0.608–0.707, OR 2.37–5.71) than for African individuals (AUC 0.502–0.585, OR 0.95–2.01). Furthermore, PRS that leverage information from African Americans yield modest AUC and odds ratio improvements for sub-Saharan African individuals. These improvements were larger for West Africans than for South Africans. Finally, we find that existing PRS are largely unable to predict whether African individuals develop aggressive forms of prostate cancer, as specified by higher tumor stages or Gleason scores.
Conclusions
Genetic predictions of prostate cancer perform poorly if the study sample does not match the ancestry of the original GWAS. PRS built from European GWAS may be inadequate for application in non-European populations and perpetuate existing health disparities
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015
Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defi ned criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specifi c DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defi ned criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specifi c DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI)
Characterizing Prostate Cancer Risk Through Multi-Ancestry Genome-Wide Discovery of 187 Novel Risk Variants
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic