117 research outputs found
Large eddy simulations of solitons colliding with intrusions
The dynamics of lock-release Intrusive Gravity Currents (IGCs) generating Internal Solitary Waves (ISWs) are investigated by three-dimensional large eddy simulations. We set the numerical, laboratory-scale domain in order to release a uniform fluid in multi-layer, stratified ambient, exciting pycnocline displacements. By adopting different initial settings, we analyzed the influence of the ambient stratification on both IGCs and ISWs features. We present the main flow dynamics and the time evolution of IGC and ISW front and trough positions, respectively. During the simulations, the ISW is allowed to reach the vertical wall at the end of the domain, and it undergoes reflection. We then analyzed the interaction between the IGC and the reflected ISW: the wave is observed to accelerate as it is pushed upwards by the intrusion, which, in turns, flows below the ISW, decelerating. By analyzing instantaneous velocity fields and flow rates, we found that during this interaction, the ISW increases its celerity in response of the reduced area available for its propagation, partially occupied by the intrusion, and because the velocity field in the IGC interface surroundings acts to facilitate the ISW passage
Mixing in lock-release gravity currents propagating up a slope
Lock-exchange gravity currents propagating up a slope are investigated by large eddy simulations, focusing on the entrainment and mixing processes occurring between the dense current and the ambient fluid. Relevant parameters, such as the aspect ratio of the initial volume of dense fluid in the lock R, the angle between the bottom boundary and the horizontal direction \u3b8 and the depth aspect ratio \u3c6, are varied. The numerical results are compared with laboratory experiments and a good agreement is found. Entrainment and mixing in a lock-release gravity current are studied using different entrainment parameters and an energy budget method. The entrainment is found to depend on both Froude, Fr, and Reynolds, Re, numbers. In addition, the dependence of both entrainment and mixing on the parameters varied is discussed. The entrainment decreases with increasing steepness of the bottom and R. Irreversible mixing is not affected by the varied parameters during the slumping phase, while during the successive phases of motion, it is found to decrease with the increase of \u3b8 and R. Low entrainment and mixing occur for \u3c6 <
Analysis of lock-exchange gravity currents over smooth and rough beds
Gravity currents produced by full-depth lock-release of saline water into a fresh water tank are studied focusing on the influence of the initial density of the saline mixture in the lock and the bed roughness on gravity current kinematics. Temporal evolution of the current front position and front velocity are analysed and related to different phases of the current. Time–space evolution of current depth-averaged density and current height are assessed as well. Roughness of the channel bed plays an important role in the current kinematics, particularly in decreasing the front velocity due to extra drag at the bed. The analysis of Froude numbers, estimated with the initial and local reduced gravity and established with different length scales of the current, allow for the definition of the important variables and current dynamics of each phase of the current development
Long term methylphenidate exposure and growth in children and adolescents with ADHD. A systematic review and meta-analysis
BACKGROUND: Methylphenidate (MPH) is an efficacious treatment for ADHD but concerns have been raised about potential adverse effects of extended treatment on growth.OBJECTIVES: To systematically review the literature, up to December 2018, conducting a meta-analysis of association of long-term (> six months) MPH exposure with height, weight and timing of puberty.RESULTS: Eighteen studies (ADHD n = 4868) were included in the meta-analysis. MPH was associated with consistent statistically significant pre-post difference for both height (SMD = 0.27, 95% CI 0.16-0.38, p < 0.0001) and weight (SMD = 0.33, 95% CI 0.22-0.44, p < 0.0001) Z scores, with prominent impact on weight during the first 12 months and on height within the first 24-30 months. No significant effects of dose, formulation, age and drug-naïve condition as clinical moderators were found. Data on timing of puberty are currently limited.CONCLUSIONS: Long-term treatment with MPH can result in reduction in height and weight. However, effect sizes are small with possible minimal clinical impact. Long-term prospective studies may help to clarify the underlying biological drivers and specific mediators and moderators.</p
Bed shear stress estimation for gravity currents performed in laboratory
Gravity currents are caused by density differences between two fluids which may be due to temperature, dissolved substances or the presence of particles in suspension. In this study saline currents, in which the higher density is produced by dissolved salt, are reproduced in laboratory with the aim to characterize the bed shear stress. Saline currents can in fact be responsible for high erosion rates and the bed shear stress is a quantification of this erosive capacity. The dynamics of buoyancy driven flows are complex and the effect of the initial density gravity current on the bed shear stress is not explored yet. The results herein showed confirm the importance of detailed velocity profile measurements for the determination of the friction velocity which is a key parameter for the currents propagation and for characterizing the momentum and mass exchanges between the current and the bed. The spatial evolution of the bed shear stress caused by the passage of a gravity current is here estimated using the logarithmic velocity profile method for, as a first attempt, a value of the von Kármán constant of k 0.405. The use of this constant is then verified and discussed
Dynamics of the head of gravity currents
The present work experimentally investigates the dynamics of unsteady gravity currents produced by lock-release of a saline mixture into a fresh water tank. Seven different experimental runs were performed by varying the density of the saline mixture in the lock and the bed roughness. Experiments were conducted in a Perspex flume, of horizontal bed and rectangular cross section, and recorded with a CCD camera. An image analysis technique was applied to visualize and characterize the current allowing thus the understanding of its general dynamics and, more specifically, of the current head dynamics. The temporal evolution of both head length and mass shows repeated stretching and breaking cycles: during the stretching phase, the head length and mass grow until reaching a limit, then the head becomes unstable and breaks. In the instants of break, the head aspect ratio shows a limit of 0.2 and the mass of the head is of the order of the initial mass in the lock. The average period of the herein called breaking events is seen to increase with bed roughness and the spatial periodicity of these events is seen to be approximately constant between runs. The rate of growth of the mass at the head is taken as a measure to assess entrainment and it is observed to occur at all stages of the current development. Entrainment rate at the head decreases in time suggesting this as a phenomenon ruled by local buoyancy and the similarity between runs shows independence from the initial reduced gravity and bed roughness. © 2013 Springer Science+Business Media Dordrecht
Mixing induced in a dense current flowing down a sloping bottom in a rotating fluid
A density driven current was generated in the laboratory by releasing dense fluid over a sloping bottom in a rotating freshwater system. Over a wide range of parameter values, the following four flow types were found: laminar, wave, turbulent and eddy regime. The amount of mixing between the dense and the ambient fluids was measured and its dependence on the Froude number and on the distance downslope was determined for increasing values of the Reynolds number. Mixing increased significantly when passing from the laminar to the wave regime; i.e. with increasing Froude number. We believe that mixing between the dense salty water and the lighter fresh water was caused by breaking waves. We quantified the amount of mixing observed and estimated the value of the entrainment velocity at the interface between the dense fluid and the fresh overlying fluid. The results have been compared with previous laboratory experiments which presented the classic turbulent entrainment behavior and observational estimates of the Mediterranean and Denmark Strait overflow
Scour due to a horizontal turbulent jet: numerical and experimental investigation
In this paper both numerical and experimental investigations of local scour downstream of a sill followed by a rigid apron are presented. Nine laboratory experiments were carried out in clear water scour conditions, with different values of discharge. At the end of each run, velocity measurements both on the apron and on the scour hole were performed by ultrasonic Doppler velocimetry. A mathematical-numerical model was developed, simulating local scour downstream of a sill followed by an apron. The model uses information related both to the measured velocity fields and to the physical and mechanical properties of the sand constituting the mobile bed. The mathematical structure of the model consists of a second order partial differential parabolic equation whose unknown is the shape of the mobile bed. The numerical integration of this nonlinear equation, with suitable boundary conditions, is in agreement with the measured scour profiles at the end of the run. Upon comparing experimental and numerical data, a similar temporal evolution of the maximum scour depth is observed
- …