3 research outputs found

    Thermal Excitation and Piezoresistive Detection of Cantilever In-Plane Resonance Modes for Sensing Applications

    Get PDF
    Thermally excited and piezoresistively detected bulk-micromachined cantilevers vibrating in their in-plane flexural resonance mode are presented. By shearing the surrounding fluid rather than exerting normal stress on it, the in-plane mode cantilevers exhibit reduced added fluid mass effects and improved quality factors in a fluid environment. In this letter, different cantilever geometries with in-plane resonance frequencies from 50 kHz to 2.2 MHz have been tested, with quality factors as high as 4200 in air and 67 in water

    Geometrical Optimization of Resonant Cantilevers Vibrating in In-Plane Bending Modes

    Get PDF
    The influence of the beam geometry on the quality factor and resonance frequency of resonant silicon cantilever beams vibrating in their fundamental in-plane flexural mode has been investigated in air and water. Compared to cantilevers vibrating in their out-of-plane flexural mode, utilizing the in plane mode results in reduced damping and reduced mass loading by the surrounding fluid. Quality factors as high as 4,300 in air and 67 in water have been measured for cantilevers with a 12 μm thick silicon layer. This is in comparison to Q factors up to 1,500 in air and up to 20 in water for cantilevers vibrating in their fundamental out-of-plane bending mode. Based on the experimental data, design guidelines are established for beam dimensions that ensure maximal Q-factors and minimal mass loading by the surrounding fluid
    corecore