50 research outputs found
Recommended from our members
Application of a CdTe gamma-ray spectrometer to remote characterization of high-level radioactive waste tanks
Small, shielded cadmium telluride (CdTe) semiconductor gamma-ray detectors have been used for in situ radiological characterization of underground high-level radioactive waste tanks. Remote measurements up to 700 R/h have been made in gamma radiation fields. Spectral data have been used to generate qualitative and quantitative radionuclide profiles of high-level radioactive waste tanks. Two electronic spectral enhancement techniques (pulse risetime discrimination and pulse risetime compensation) have been used in order to measure trace isotopes in the presence of large amounts of {sup 137}Cs. Spectral resolution better than 1.5% FWHM for the {sup 137}Cs 662 keV photopeak has been obtained. 4 refs., 7 figs
Recommended from our members
Remote nuclear screening system for hostile environments
A remote measurement system has been constructed for in situ gamma and beta isotopic characterization of highly radioactive nuclear material in hostile environments. A small collimated, planar CdZnTe detector is used for gamma-ray spectroscopy. Spectral resolution of 2% full width at half maximum at 662 kiloelectronvolts has been obtained remotely using rise time compensation and limited pulse shape discrimination, Isotopc measurement of high-energy beta emitters was accomplished with a ruggedized, deeply depleted, surface barrier silicon dictator. The primary function of the remote nuclear screening system is to provide fast qualitative and quantitative isotopic assessment of high-level radioactive material
Recommended from our members
Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes
Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/ n ” data
This paper presents a new stochastic multidimensional scaling vector threshold model designed to analyze “pick any/ n ” choice data (e.g., consumers rendering buy/no buy decisions concerning a number of actual products). A maximum likelihood procedure is formulated to estimate a joint space of both individuals (represented as vectors) and stimuli (represented as points). The relevant psychometric literature concerning the spatial treatment of such binary choice data is reviewed. The nonlinear probit type model is described, as well as the conjugate gradient procedure used to estimate parameters. Results of Monte Carlo analyses investigating the performance of this methodology with synthetic choice data sets are presented. An application concerning consumer choices for eleven competitive brands of soft drinks is discussed. Finally, directions for future research are presented in terms of further applications and generalizing the model to accommodate three-way choice data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45743/1/11336_2005_Article_BF02294452.pd
Recommended from our members
Perspectives on ENCODE
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020- 2449-8.© 2020, The Author(s). The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.NIH grants: U01HG007019, U01HG007033, U01HG007036, U01HG007037, U41HG006992, U41HG006993, U41HG006994, U41HG006995, U41HG006996, U41HG006997, U41HG006998, U41HG006999, U41HG007000, U41HG007001, U41HG007002, U41HG007003, U41HG007234, U54HG006991, U54HG006997, U54HG006998, U54HG007004, U54HG007005, U54HG007010 and UM1HG009442
Recommended from our members
A method to improve spectral resolution in planar semiconductor gamma-ray detectors
This paper describes an empirically derived algorithm to compensate for charge trapping in CdTe, CdZnTe, and other planar semiconductor detectors. The method is demonstrated to be an improvement over available systems and application to experimental data is shown
Recommended from our members
Application of a CdTe gamma-ray spectrometer to remote characterization of high-level radioactive waste tanks
Small, shielded cadmium telluride (CdTe) semiconductor gamma-ray detectors have been used for in situ radiological characterization of underground high-level radioactive waste tanks. Remote measurements have been made in gamma radiation fields up to 700 R/h. Spectral data have been used to generate qualitative and quantitative radionuclide profiles of high-level radioactive waste tanks. Two electronic spectral enhancement techniques (pulse risetime discrimination and pulse risetime compensation) have been used in order to measure trace isotopes with photopeak energies greater than 662keV in the presence of large amounts of {sup 137}Cs. Spectral resolution of 1.5% for the {sup 137}Cs 662 keV photopeak has been obtained
Recommended from our members
Hot cell remote nuclear scanning of tank core samples
A Westinghouse Hanford Company (WHC)-designed remote measurement system has been constructed for gamma and beta isotopic characterization of Hanford Site high-level waste tank core sample materials in a hot cell. A small, collimated, planar CdZnTe detector is used for gamma-ray spectroscopy. Spectral resolution of 2% full-width-at-maximum at 662 kiloelectronvolts (keV) has been obtained remotely using risetime compensation and limited pulse shape discrimination (PSD). Isotopic measurement of high-energy beta emitters was accomplished with a ruggedly made, deeply depleted, surface barrier silicon detector. The primary function of the remote nuclear screening system is to provide a fast, qualitative stratigraphic assessment (with isotopic information) of high-level radioactive material. Both gamma spectroscopy and beta measurements have been performed on actual core segments. Differences in radionuclide content, which correspond with color or texture variations, have been seen in constant cross section core samples, although for many samples the activity variation can be ascribed to geometry and/or mass factors. Discussion of the design, implementation, results and potential benefits will be presented