4 research outputs found

    A Novel Microduplication in the Neurodevelopmental Gene SRGAP3 That Segregates with Psychotic Illness in the Family of a COS Proband

    Get PDF
    Schizophrenia is a debilitating mental disorder affecting approximately 1% of the world's population. Childhood onset schizophrenia (COS), defined as onset before age 13, is a rare and severe form of the illness that may have more salient genetic influence. We identified a ~134 kb duplication spanning exons 2–4 of the Slit-Robo GTPase-activating protein 3 (SRGAP3) gene on chromosome 3p25.3 that tracks with psychotic illness in the family of a COS proband. Cloning and sequencing of the duplication junction confirmed that the duplication is tandem, and analysis of the resulting mRNA transcript suggests that the duplication would result in a frame shift mutation. This is the first family report of a SRGAP3 copy number variant (CNV) in schizophrenia. Considering that SRGAP3 is important in neural development, we conclude that this SRGAP3 duplication may be an important factor contributing to the psychotic phenotype in this family

    De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia

    No full text
    Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders

    ARTICLE Direct Measure of the De Novo Mutation Rate in Autism and Schizophrenia Cohorts

    No full text
    The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (m) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n ¼ 285) and population control individuals (n ¼ 285) with available parental DNA. A survey of~430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 3 10 À8 ) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants

    Direct Measure of the De Novo Mutation Rate in Autism and Schizophrenia Cohorts

    Get PDF
    The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (mu) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of -430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 x 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants
    corecore