11 research outputs found

    Tunable superconducting microstrip resonators

    Get PDF
    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Q(i) similar to 10(4) in the single photon regime. Q(i) rapidly increases with the number of photons in the resonator N and exceeds 10(5) for N similar to 10 - 50. A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning delta f = 62 MHz around f(0) = 2.4 GHz for a fundamental mode and delta f = 164MHz for a third harmonic. This translates into a tuning parameter Q(i)delta f/f(0) = 150. The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5K

    Magnetic field resilient superconducting fractal resonators for coupling to free spins

    Get PDF
    We demonstrate a planar superconducting microwave resonator intended for use in applications requiring strong magnetic fields and high quality factors. In perpendicular magnetic fields of 20 mT, the niobium resonators maintain a quality factor above 25 000 over a wide range of applied powers, down to single photon population. In parallel field, the same quality factor is observed above 160 mT, the field required for coupling to free spins at a typical operating frequency of 5 GHz. We attribute the increased performance to the current branching in the fractal design. We demonstrate that our device can be used for spectroscopy by measuring the dissipation from a pico-mole of molecular spins

    Galvanically split superconducting microwave resonators for introducing internal voltage bias

    Get PDF
    We present the design and performance of high-Q superconducting niobium nitride microwave resonators intended for use in hybrid quantum systems, coupling spin degrees of freedom to the cavity mode, both magnetically and electrically. We demonstrate a solution that allows to introduce static electric fields in the resonator without compromising the microwave performance. Quality factors above 10(5) remain unchanged in strong applied static electric fields above 10 MV/m and magnetic fields up to similar to 400 mT. By design, the configuration of the dc field matches that of the microwave field, especially advantageous for experiments on electrostatically controlled spin systems

    Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3+:Al2O3

    Get PDF
    Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3+ in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation

    Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption

    Get PDF
    Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evid ence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices

    Slow propagation line-based superconducting devices for quantum technology

    Get PDF
    In the field of circuit quantum electrodynamics (c-QED), the coherent interaction of two-level systems (TLSs) with photons, confined in a superconducting microwaveresonator, opens up new possibilities for quantum computing experiments.This thesis contributes to the expansion of c-QED tool-box with slow propagation line-based solutions for ubiquitous techniques, such as cryogenic Near Field Scanning Microwave Microscopy (NSMM), Electron Spin Resonance (ESR) spectroscopy and Traveling Wave Parametric Amplifier (TWPA). For NSMM, novel compact superconducting fractal resonators have been developed to be directly integrated on a scanning probe. We report NSMM operation based on a microwave high-Q resonator populated with less than 10^3 photons and demonstrate a capacitive sensitivity of 0.38 aF/rtHz.The unique properties and the design flexibility of fractal resonators also boost their resiliency to strong magnetic fields for ESR studies. The reported high Q-factors above 10^5 in a magnetic field up to 0.4 T translate into ESR sensitivity of 5 10^5 spins/rtHz.Furthermore, we demonstrate the operation of a practical TWPA based on a slow propagation fractal line. We achieve per unit length gain of > 0.5 dB/cm and total gain of ~6 dB for a 10 cm long line. Due to a radically shortened line, the amplifier is less vulnerable to fabrication defects. Moreover, due to a successful impedance matchingbetween the amplifier line and in/out terminals, the obtained gain vs frequency characteristic has only moderate ripples. To mitigate a common TWPA problem ofcoupling to parasitic ground plane resonances, we deploy a novel multilayer fabrication technology, which combines high and low kinetic inductance (KI) elements.Finally, we present an alternative implementation of a slow propagation line: a microstrip line with a thin film Atomic Layer Deposition (ALD) Al2O3 oxide. The resonator, based on a segment of a microstrip line, has a Q-factor on the order of 10^4 at single photon powers, reaching up to 10^5 at higher powers. As an additional functionality,we incorporate dc current control over KI so that the resonance frequency is tuned by 62 MHz range, which corresponds to a KI-related nonlinearity of 3%

    Kinetic inductance as a microwave circuit design variable by multilayer fabrication

    No full text
    We report on the development of a reliable NbN/Al/Nb/NbN multilayer fabrication technique for combining design elements with and without kinetic inductance in superconducting microwave circuits. As a proof-of-concept we demonstrate the application of the proposed technique to build a slow microwave propagation line matched to 50 Ω terminals. Fabrication details along with the design and measurements are discussed. At 8 GHz the presented device operates as a dc controllable full-turn phase shifter. We suggest that by exploiting the kinetic inductance as a design variable one can greatly improve operation parameters for a variety of standard microwave designs such as step-impedance filters and resonators

    Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line

    No full text
    Quantum limited amplifiers are sought after for a wide range of applications within quantum technologies and sensing. One promising candidate is the travelling wave parametric amplifier which exploits the non-linear kinetic inductance of a superconducting transmission line. This type of microwave amplifier promises to deliver a high gain, a quantum limited noise performance over several GHz bandwidth, and a high dynamic range. However, practical realizations of this type of device have so far been limited by fabrication defects, since the length of the superconducting transmission line required for achieving substantial parametric gain is on the order of similar to 1m. Here, we report on a design for a microwave traveling wave amplifier based on a slow propagation line comprising a central strip with high kinetic inductance and quasi-fractal line-to-ground capacitors. Due to an enhanced per unit length inductance (73 nH cm(-1)) and capacitance (15 pF cm(-1)), the line has a microwave propagation velocity as low as 9.8 x 10(8) cm s(-1). This translates into parametric gain up to 0.5 dB cm(-1) and a total gain of 6 dB for just a similar to 10 cm long transmission line. Moreover, the flexibility of the presented design allows balancing the line inductance and capacitance in order to keep the characteristic impedance close to 50 Omega and to suppress standing waves, both factors being essential in order to implement a practical parametric amplifier in the microwave domain

    A near-field scanning microwave microscope based on a superconducting resonator for low power measurements

    No full text
    We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 7 10−20 F/rtHz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy

    Direct Identification of Dilute Surface Spins on Al2 O3: Origin of Flux Noise in Quantum Circuits

    Get PDF
    An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2O3. We measure a spin density of 2.2 71017 spins/m2, attributed to physisorbed atomic hydrogen and S=1/2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices
    corecore