356 research outputs found
Recommended from our members
Security analysis of the micro transport protocol with a misbehaving receiver
BitTorrent is the most widely used Peer-to-Peer (P2P) protocol and it comprises the largest share of traffic in Europe. To make BitTorrent more Internet Service Provider (ISP) friendly, BitTorrent Inc. invented the Micro Transport Protocol (uTP). It is based on UDP with a novel congestion control called Low Extra Delay Background Transport (LEDBAT). This protocol assumes that the receiver always gives correct feedback, since otherwise this deteriorates throughput or yields to corrupted data. We show through experimental investigation that a misbehaving uTP receiver, which is not interested in data integrity, can increase the bandwidth of the sender by up to five times. This can cause a congestion collapse and steal large share of a victim’s bandwidth. We present three attacks, which increase the bandwidth usage significantly. We have tested these attacks in a real world environment and show its severity both in terms of number of packets and total traffic generated. We also present a countermeasure for protecting against the attacks and evaluate the performance of that defence strategy
Recommended from our members
Stealing bandwidth from BitTorrent seeders
BitTorrent continues to comprise the largest fraction of Internet traffic. While significant progress has been made in understanding the BitTorrent choking mechanism, its security vulnerabilities have not been investigated thoroughly. This paper presents an experimental analysis of bandwidth attacks against different choking algorithms in the BitTorrent seed state. We reveal a simple exploit that allows malicious peers to receive a considerably higher download rate than contributing leechers, therefore introducing significant efficiency degradations for benign peers. We show the damage caused by the proposed attack in two different environments: a lab testbed comprising 32 peers and a PlanetLab testbed with 300 peers. Our results show that 3 malicious peers can degrade the download rate up to 414.99% for all peers. Combined with a Sybil attack that consists of as many attackers as leechers, it is possible to degrade the download rate by more than 1000%. We propose a novel choking algorithm which is immune against bandwidth attacks and a countermeasure against the revealed attack
Recommended from our members
Analysis of bandwidth attacks in a bittorrent swarm
The beginning of the 21st century saw a widely publicized lawsuit against Napster. This was the first Peer-to-Peer software that allowed its users to search for and share digital music with other users. At the height of its popularity, Napster boasted 80 million registered users. This marked the beginning of a Peer-to-Peer paradigm and the end of older methods of distributing cultural possessions. But Napster was not entirely rooted in a Peer-to-Peer paradigm. Only the download of a file was based on Peer-to-Peer interactions; the search process was still based on a central server. It was thus easy to shutdown Napster. Shortly after the shutdown, Bram Cohen developed a new Peer-to-Peer
protocol called BitTorrent.
The main principle behind BitTorrent is an incentive mechanism, called a choking algorithm, which rewards peers that share. Currently, BitTorrent is one of the most widely used protocols on the Internet. Therefore, it is important to investigate the security of this protocol. While significant progress has been made in understanding the Bit- Torrent choking mechanism, its security vulnerabilities have not yet been thoroughly investigated. This dissertation provides a security analysis of the Peer-to-Peer protocol BitTorrent on the application and
transport layer.
The dissertation begins with an experimental analysis of bandwidth attacks against different choking algorithms in the BitTorrent seed state. I reveal a simple exploit that allows malicious peers to receive a considerably higher download rate than contributing leechers, thereby causing a significant loss of efficiency for benign peers. I show the damage caused by the proposed attack in two different environments—a lab testbed comprised of 32 peers and a global testbed called PlanetLab with 300 peers. Our results show that three malicious peers can degrade the download rate by up to 414.99 % for all peers. Combined with a Sybil attack with as many attackers as leechers, it is possible to degrade the download rate by more than 1000 %. I propose a novel choking algorithm which is immune against bandwidth attacks and a countermeasure against the revealed attack. This thesis includes a security analysis of the transport layer. To make BitTorrent more Internet Service Provider friendly, BitTorrent Inc. invented the Micro Transport Protocol. It is based on User Datagram Protocol with a novel congestion control called Low Extra Delay Background Transport. This protocol assumes that the receiver always provides correct feedback, otherwise this deteriorates throughput or yields to corrupted data. I show through experimental evaluation, that a misbehaving Micro Transport Protocol receiver which is not interested in data integrity, can increase the bandwidth of the sender by up to five times. This can cause a congestion collapse and steal a large share of a victim’s bandwidth. I present three attacks, which increase bandwidth usage significantly. I have tested these attacks in real world environments and demonstrate their severity both in terms of the number of packets and total traffic generated. I also present a countermeasure for protecting against these attacks and evaluate the performance of this defensive strategy.
In the last section, I demonstrate that the BitTorrent protocol family is vulnerable to Distributed Reflective Denial-of-Service attacks. Specifically, I show that an attacker can exploit BitTorrent protocols (Micro Transport Protocol, Distributed Hash Table, Message Stream Encryption and BitTorrent Sync to reflect and amplify traffic from Bit- Torrent peers to any target on the Internet. I validate the efficiency, robustness, and the difficulty of defence of the exposed BitTorrent vulnerabilities in a Peer-to-Peer lab testbed. I further substantiate lab results by crawling more than 2.1 million IP addresses over Mainline Distributed Hash Table and analyzing more than 10,000 BitTorrent handshakes. The experiments suggest that an attacker is able to exploit BitTorrent peers to amplify traffic by a factor of 50, and in the case of BitTorrent Sync 120. Additionally, I observe that the most popular BitTorrent clients are the most vulnerable ones
Readers\u27 Speakout
Readers are invited to send in comments—about the Women\u27s Studies Newsletter, about the National Women\u27s Studies Association, or about any issue of concern to feminist education—in the form of letters or brief essays of opinion (up to 700 words). We will print letters only with the written consent of the writer. Please send to the editor two copies of your letter or essay, along with a self-addressed, stamped envelope.
Dear Elaine Reuben:
The Association for Women in Psychology wishes to call your attention to a case that we think should be of considerable interest to the National Women\u27s Studies Association
Voltammetry of (E)-l-Phenyl-2-Nitro-l-Propene in N,N-Dimethyiformamide Solutions
ABSTRACT The electrode reduction mechanism of (E)=phenyl-2-nitro-l-propene (PNP) in N,N-dimethylformamide (DMF) has been studied by polarographic, cyclic voltammetric, and rotating disk techniques. The compound is reduced in two polarographic steps in DMF and DMF-water solutions. Data taken at potentials of the first polarographic plateau suggest that the compound is reduced to a product via a mechanism involving coupling of the ion radicals of the precursor. The rate of the coupling reaction has been studied as a function of concentration of the PNP and water content of the solvent. Oscilloscopic recording of rapid cyclic voltammetry experiments demonstrate that the second polarographic step represents a two-electron reduction of the parent compound, PNP
Identification of RNA editing sites in the SNP database
The relationship between human inherited genomic variations and phenotypic differences has been the focus of much research effort in recent years. These studies benefit from millions of single-nucleotide polymorphism (SNP) records available in public databases, such as dbSNP. The importance of identifying false dbSNP records increases with the growing role played by SNPs in linkage analysis for disease traits. In particular, the emerging understanding of the abundance of DNA and RNA editing calls for a careful distinction between inherited SNPs and somatic DNA and RNA modifications. In order to demonstrate that some of the SNP database records are actually somatic modification, we focus on one type of these modifications, namely A-to-I RNA editing, and present evidence for hundreds of dbSNP records that are actually editing sites. We provide a list of 102 RNA editing sites previously annotated in dbSNP database as SNPs, and experimentally validate seven of these. Interestingly, we show how dbSNP can serve as a starting point to look for new editing sites. Our results, for this particular type of RNA editing, demonstrate the need for a careful analysis of SNP databases in light of the increasing recognition of the significance of somatic sequence modifications
Experimental Evaluation of Floating Car Data Collection Protocols in Vehicular Networks
The main objectives of the Intelligent Transportation Systems (ITS) vision is to improve road safety, traffic management, and mobility by enabling cooperative communication among participants. This vision requires the knowledge of the current state of the road traffic, which can be obtained by collecting Floating Car Data (FCD) information using Dedicated Short-Range Communication (DSRC) based on the IEEE 802.11p standard. Most of the existing FCD collection protocols have been evaluated via simulations and mathematical models, while the real-world implications have not been thoroughly investigated. This paper presents an open-source implementation of two state-of-the-art FCD collection algorithms, namely BASELINE and DISCOVER. These algorithms are implemented in an open-source vehicular prototyping platform and validated in a real-world experimental setup
- …