383 research outputs found
Renal ammonium excretion after an acute acid load: Blunted response in uric acid stone formers but not in patients with type 2 diabetes
Idiopathic uric acid nephrolithiasis is characterized by elevated urinary net acid excretion and insufficient buffering by ammonium, resulting in excessively acidic urine and titration of the relatively soluble urate anion to insoluble uric acid. Patients with type 2 diabetes have similar changes in urinary pH, net acid excretion, and ammonium in 24-h urine collections at baseline, even after controlling for dietary factors, and are at increased risk for uric acid nephrolithiasis. However, not all patients with type 2 diabetes develop kidney stones, suggesting that uric acid stone formers may have additional urinary defects, perhaps not apparent at baseline. We performed a metabolic study of 14 patients with idiopathic uric acid nephrolithiasis, 13 patients with type 2 diabetes, and 8 healthy control subjects of similar body mass index. After equilibration on a fixed diet for 5 days, subjects were given a single oral acid load (50 meq ammonium chloride), and urine was collected hourly for 4 h. Uric acid stone formers had a lower ammonium excretory response to acute acid loading compared with diabetic and nondiabetic nonstone formers, suggesting that an ammonium excretory defect unique to uric acid stone formers was unmasked by the acid challenge. The Zucker diabetic fatty rat also did not show impaired urinary ammonium excretion in response to acute acid challenge. A blunted renal ammonium excretory response to dietary acid loads may contribute to the pathogenesis of idiopathic uric acid nephrolithiasis. © 2013 the American Physiological Society
Impact of Acute Kidney Injury and CKD on Adverse Outcomes in Critically Ill Septic Patients
Introduction: Chronic kidney disease (CKD) and acute kidney injury (AKI) are strongly associated with excess morbidity and mortality and frequently co-occur in critically ill septic patients, but how their interplay affects clinical outcomes is not well elucidated. Methods: We conducted a single-center, retrospective cohort study of 2632 adult patients admitted to the intensive care unit (ICU) with severe sepsis or septic shock. Subjects were classified into 6 groups according to baseline CKD (no-CKD: estimated glomerular filtration rate [eGFR] ≥60; CKD: eGFR 15−59 ml/min per 1.73 m2) and incident AKI by the Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine criteria (no-AKI, AKI stage 1, AKI stages ≥2) during ICU stay. Study outcomes were 90-day mortality (in hospital or within 90 days of discharge) and incident/progressive CKD. Results: Prevalent CKD was 46% and incident AKI was 57%. Adjusted hazard ratios (95% confidence intervals) for 90-day mortality relative to the reference group of no-CKD/no-AKI were 1.5 (1.1−2.0) in no-CKD/AKI stage 1, 2.4 (1.9−3.1) in no-CKD/AKI stages≥2, 1.1 (0.8−1.4) in CKD/no-AKI, 1.2 (0.9−1.6) in CKD/AKI stage 1, and 2.2 (1.7−2.9) in CKD/AKI stages ≥2. A similar trend was observed for incident/progressive CKD during a median follow-up of 15.3 months. Conclusion: Stage 1 AKI on CKD was not associated with an independent increased risk of adverse outcomes in critically ill septic patients. AKI stages ≥2 on CKD and any level of AKI in no-CKD patients were strongly and independently associated with adverse outcomes. Sepsis-associated stage 1 AKI on CKD may represent distinct underlying pathophysiology, with more prerenal cases and less severe de novo intrinsic damage, which needs further investigation
The Growth of Bubbles in Cosmological Phase Transitions
We study how bubbles grow after the initial nucleation event in generic
first-order cosmological phase transitions characterised by the values of
latent heat, interface tension and correlation length, and driven by a scalar
order parameter . Equations coupling and the fluid variables
and and depending on a dissipative constant are derived and solved
numerically in the 1+1 dimensional case starting from a slightly deformed
critical bubble configuration. Parameters corresponding to QCD and electroweak
phase transitions are chosen and the whole history of the bubble with formation
of combustion and shock fronts is computed as a function of . Both
deflagrations and detonations can appear depending on the values of the
parameters. Reheating due to collisions of bubbles is also computed.Comment: 24 LaTeX-pages with 20 figures not included. The complete PostScript
file, including figures, is available by anonymous ftp from
fltxc.helsinki.fi, as /pub/bubble.ps, or as a hardcopy by airmail (a
dublicate lies at nic.funet.fi:/pub/sci/physics/papers/bubble.ps). Helsinki
Preprint HU-TFT-93-4
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Directional limits on persistent gravitational waves using LIGO S5 science data
The gravitational-wave (GW) sky may include nearby pointlike sources as well
as astrophysical and cosmological stochastic backgrounds. Since the relative
strength and angular distribution of the many possible sources of GWs are not
well constrained, searches for GW signals must be performed in a
model-independent way. To that end we perform two directional searches for
persistent GWs using data from the LIGO S5 science run: one optimized for
pointlike sources and one for arbitrary extended sources. The latter result is
the first of its kind. Finding no evidence to support the detection of GWs, we
present 90% confidence level (CL) upper-limit maps of GW strain power with
typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2
Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on
pointlike sources constitute a factor of 30 improvement over the previous best
limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain
from interesting targets including Sco X-1, SN1987A and the Galactic Center as
low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These
limits are the most constraining to date and constitute a factor of 5
improvement over the previous best limits.Comment: 10 pages, 4 figure
Structural basis of the filamin A actin-binding domain interaction with F-actin
Cryo-EM reconstructions were deposited in the Electron Microscopy Data Bank with the following accession numbers: F20-F-actin-FLNaABD, EMD-7833; F20-F-actin-FLNaABD-Q170P, EMD-7832; F20-F-actin-FLNaABD-E254K, EMD-8918; Krios-F-actin-FLNaABD-E254K, EMD-7831. The corresponding FLNaABD-E254K filament model was deposited in the PDB with accession number 6D8C. Source data for F-actin-targeting analyses (Figs. 2c,d,g,h, 3b,c,e,f, 4d,e, 5c,d, and 6a,b) and co-sedimentation assays (Figs. 5g and 6d) are available with the paper online. Other data are available from the corresponding author upon reasonable request. We thank Z. Razinia for generating numerous FLNa constructs, S. Wu for expertise in using the Krios microscope, J. Lees for advice on model refinement, and M. Lemmon for helpful comments in preparing the manuscript. We also thank the Yale Center for Research Computing for guidance and use of the Farnam Cluster, as well as the staff at the YMS Center for Molecular Imaging for the use of the EM Core Facility. This work was funded by grants from the National Institutes of Health (R01-GM068600 (D.A.C.), R01-NS093704 (D.A.C.), R37-GM057247 (C.V.S.), R01-GM110530 (C.V.S.), T32-GM007324, T32-GM008283) and an award from American Heart Association (15PRE25700119 (D.V.I.)).Peer reviewedPostprin
Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission
Many animal and plant viruses rely on vectors for their transmission from host to
host. Grapevine fanleaf virus (GFLV), a picorna-like virus from
plants, is transmitted specifically by the ectoparasitic nematode
Xiphinema index. The icosahedral capsid of GFLV, which
consists of 60 identical coat protein subunits (CP), carries the determinants of
this specificity. Here, we provide novel insight into GFLV transmission by
nematodes through a comparative structural and functional analysis of two GFLV
variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by
nematodes, and showed that the transmission defect is due to a glycine to
aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the
crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of
GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed
loop at the outer surface of the capsid and did not affect the conformation of
the assembled capsid, nor of individual CP molecules. The loop is part of a
positively charged pocket that includes a previously identified determinant of
transmission. We propose that this pocket is a ligand-binding site with
essential function in GFLV transmission by X. index. Our data
suggest that perturbation of the electrostatic landscape of this pocket affects
the interaction of the virion with specific receptors of the nematode's
feeding apparatus, and thereby severely diminishes its transmission efficiency.
These data provide a first structural insight into the interactions between a
plant virus and a nematode vector
- …