2,659 research outputs found
Lymphatic endothelial differentiation: start out with Sox - carry on with Prox
Lymphatic system development comes into sharper focus
Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus
The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C
Spatiotemporal endothelial cell-pericyte association in tumors as shown by high resolution 4D intravital imaging
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell-pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells
Surprises and pitfalls arising from (pseudo)symmetry
The presence of pseudosymmetry can cause problems in structure determination and refinement. The relevant background and representative examples are presented
Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics
We present new constraints on the density profiles of dark matter (DM) halos
in seven nearby dwarf galaxies from measurements of their integrated stellar
light and gas kinematics. The gas kinematics of low mass galaxies frequently
suggest that they contain constant density DM cores, while N-body simulations
instead predict a cuspy profile. We present a data set of high resolution
integral field spectroscopy on seven galaxies and measure the stellar and gas
kinematics simultaneously. Using Jeans modeling on our full sample, we examine
whether gas kinematics in general produce shallower density profiles than are
derived from the stars. Although 2/7 galaxies show some localized differences
in their rotation curves between the two tracers, estimates of the central
logarithmic slope of the DM density profile, gamma, are generally robust. The
mean and standard deviation of the logarithmic slope for the population are
gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when
measured in the gas. We also find that the halos are not under concentrated at
the radii of half their maximum velocities. Finally, we search for correlations
of the DM density profile with stellar velocity anisotropy and other baryonic
properties. Two popular mechanisms to explain cored DM halos are an exotic DM
component or feedback models that strongly couple the energy of supernovae into
repeatedly driving out gas and dynamically heating the DM halos. We investigate
correlations that may eventually be used to test models. We do not find a
secondary parameter that strongly correlates with the central DM density slope,
but we do find some weak correlations. Determining the importance of these
correlations will require further model developments and larger observational
samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy
Peer reviewe
Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels
Arteriovenous (AV) malformation (AVM) is a devastating condition characterized by focal lesions of enlarged, tangled vessels that shunt blood from arteries directly to veins. AVMs can form anywhere in the body and can cause debilitating ischemia and life-threatening hemorrhagic stroke. The mechanisms that underlie AVM formation remain poorly understood. Here, we examined the cellular and hemodynamic changes at the earliest stages of brain AVM formation by time-lapse two-photon imaging through cranial windows of mice expressing constitutively active Notch4 (Notch4*). AVMs arose from enlargement of preexisting microvessels with capillary diameter and blood flow and no smooth muscle cell coverage. AV shunting began promptly after Notch4* expression in endothelial cells (ECs), accompanied by increased individual EC areas, rather than increased EC number or proliferation. Alterations in Notch signaling in ECs of all vessels, but not arteries alone, affected AVM formation, suggesting that Notch functions in the microvasculature and/or veins to induce AVM. Increased Notch signaling interfered with the normal biological control of hemodynamics, permitting a positive feedback loop of increasing blood flow and vessel diameter and driving focal AVM growth from AV connections with higher blood velocity at the expense of adjacent AV connections with lower velocity. Endothelial expression of constitutively active Notch1 also led to brain AVMs in mice. Our data shed light on cellular and hemodynamic mechanisms underlying AVM pathogenesis elicited by increased Notch signaling in the endothelium.American Heart Association (Grant 0715062Y)Tobacco-Related Disease Research Program (Predoctoral Fellowship 18DT-0009
Fractal Dimension and Localization of DNA Knots
The scaling properties of DNA knots of different complexities were studied by
atomic force microscope. Following two different protocols DNA knots are
adsorbed onto a mica surface in regimes of (i) strong binding, that induces a
kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak
binding, that permits (partial) relaxation on the surface. In (i) the gyration
radius of the adsorbed DNA knot scales with the 3D Flory exponent within error. In (ii), we find , a value between the 3D
and 2D () exponents, indicating an incomplete 2D relaxation or a
different polymer universality class. Compelling evidence is also presented for
the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure
Endothelial LATS2 is a suppressor of bone marrow fibrosis
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell–specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.</p
Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias.
A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'iterative-build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank
- …