98 research outputs found
Gravitational Collapse and Disk Formation in Magnetized Cores
We discuss the effects of the magnetic field observed in molecular clouds on
the process of star formation, concentrating on the phase of gravitational
collapse of low-mass dense cores, cradles of sunlike stars. We summarize recent
analytic work and numerical simulations showing that a substantial level of
magnetic field diffusion at high densities has to occur in order to form
rotationally supported disks. Furthermore, newly formed accretion disks are
threaded by the magnetic field dragged from the parent core during the
gravitational collapse. These disks are expected to rotate with a sub-Keplerian
speed because they are partially supported by magnetic tension against the
gravity of the central star. We discuss how sub-Keplerian rotation makes it
difficult to eject disk winds and accelerates the process of planet migration.
Moreover, magnetic fields modify the Toomre criterion for gravitational
instability via two opposing effects: magnetic tension and pressure increase
the disk local stability, but sub-Keplerian rotation makes the disk more
unstable. In general, magnetized disks are more stable than their nonmagnetic
counterparts; thus, they can be more massive and less prone to the formation of
giant planets by gravitational instability.Comment: Chapter 16 in "Magnetic Fields in Diffuse Media", Springer-Verlag,
eds. de Gouveia Dal Pino, E., Lazarian, A., Melioli,
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Characteristics of Selected Horizons from 16 Soil Series in Minnesota
This report compiles and summarizes some chemical, physical, and mineralogical properties of samples collected in 1965 for studies on pesticide adsorption and desorption by soils. The 16 soil series sampled generally represent soils of agricultural importance and occur extensively in Minnesota. They include a wide range of soil properties found in agricultural soils in the state. The actual sampling site for each soil series met two criteria: it was close to a modal or typical profile and it had a known 5-year history of pesticide use. Supplementary profile descriptions and laboratory data were available prior to sampling from the Soil Conservation Service or the Bureau of Public Roads for a few of the soil series at their sampling sites
- …