1,682 research outputs found
The Impact of Isospin Breaking on the Distribution of Transition Probabilities
In the present paper we investigate the effect of symmetry breaking in the
statistical distributions of reduced transition amplitudes and reduced
transition probabilities. These quantities are easier to access experimentally
than the components of the eigenvectors and were measured by Adams et al. for
the electromagnetic transitions in ^{26}Al. We focus on isospin symmetry
breaking described by a matrix model where both, the Hamiltonian and the
electromagnetic operator, break the symmetry. The results show that for partial
isospin conservation, the statistical distribution of the reduced transition
probability can considerably deviate from the Porter-Thomas distribution.Comment: 16 pages, 8 figures, submitted to PR
Specimen-agnostic guided wave inspection using recursive feedback
Lamb waves, a configuration of guided waves are often applied to the inspection of plate like structures. Their complex, multi-modal nature makes them well suited to the inspection of different defects. Control over their propagation direction allows the engineer to increase inspection distance and prospectively locate the defect. Schemes already exist, but they require knowledge of material and its dispersion curves. If the material composition is not known, or external factors are effecting its speed of sound then these schemes may not be appropriate. The recursive feedback algorithm can be used to enhance guided waves in a single direction without a-priori knowledge. In recursive feedback, a guided wave is generated using the first element of an array transducer. Over several subsequent iterations, this guided wave is reinforced by re-transmitting recorded out of plane displacements. In this work, recursive feedback has been applied to two inspection problems; a contaminated kissing bond and a plate with a defect. With the kissing bond, it is shown that the the contamination can be identified as the A0 mode of generated waves are absorbed. In the defective plate, the defect direction is identified by a 10 dB increase in reflected energy when the guided waves are enhanced in one direction
Supersymmetric Models with Higher Dimensional Operators
In 4D renormalisable theories, integrating out massive states generates in
the low energy effective action higher dimensional operators (derivative or
otherwise). Using a superfield language it is shown that a 4D N=1
supersymmetric theory with higher derivative operators in either the Kahler or
the superpotential part of the Lagrangian and with an otherwise arbitrary
superpotential, is equivalent to a 4D N=1 theory of second order (i.e. without
higher derivatives) with additional superfields and renormalised interactions.
We provide examples where a free theory with trivial supersymmetry breaking
provided by a linear superpotential becomes, in the presence of higher
derivatives terms and in the second order version, a non-trivial interactive
one with spontaneous supersymmetry breaking. The couplings of the equivalent
theory acquire a threshold correction through their dependence on the scale of
the higher dimensional operator(s). The scalar potential in the second order
theory is not necessarily positive definite, and one can in principle have a
vanishing potential with broken supersymmetry. We provide an application to
MSSM and argue that at tree-level and for a mass scale associated to a higher
derivative term in the TeV range, the Higgs mass can be lifted above the
current experimental limits.Comment: 36 pages; some clarifications and references adde
Large deviations for many Brownian bridges with symmetrised initial-terminal condition
Consider a large system of Brownian motions in with some
non-degenerate initial measure on some fixed time interval with
symmetrised initial-terminal condition. That is, for any , the terminal
location of the -th motion is affixed to the initial point of the
-th motion, where is a uniformly distributed random
permutation of . Such systems play an important role in quantum
physics in the description of Boson systems at positive temperature .
In this paper, we describe the large-N behaviour of the empirical path
measure (the mean of the Dirac measures in the paths) and of the mean of
the normalised occupation measures of the motions in terms of large
deviations principles. The rate functions are given as variational formulas
involving certain entropies and Fenchel-Legendre transforms. Consequences are
drawn for asymptotic independence statements and laws of large numbers.
In the special case related to quantum physics, our rate function for the
occupation measures turns out to be equal to the well-known Donsker-Varadhan
rate function for the occupation measures of one motion in the limit of
diverging time. This enables us to prove a simple formula for the large-N
asymptotic of the symmetrised trace of , where
is an -particle Hamilton operator in a trap
Formulation, pharmacokinetics and pharmacodynamics of topical microbicides
The development of safe topical microbicides that effectively prevent human immunodeficiency virus (HIV) infection is a major goal in curbing the human immunodeficiency virus pandemic. A number of past failures resulting from mucosal toxicity or lack of efficacy have informed the field. Products that caused toxicity to the female genital tract mucosa, and thereby increased the likelihood of HIV acquisition, included nonoxynol 9, cellulose sulfate, and C31 G vaginal gel Savvy®. Topical products that were ineffective in preventing HIV infection include BufferGel®, Carraguard®, and PRO 2000®. Antiretroviral drugs such as tenofovir and dapivirine formulated into microbicide products have shown promise, but there is much to learn about ideal product formulation and acceptability, and drug distribution and disposition (pharmacokinetics). Current formulations for water-soluble molecules include vaginally or rectally applied gels, vaginal rings, films and tablets. Dosing strategies (e.g. coitally dependent or independent) will be based on the pharmacokinetics of the active ingredient and the tolerance for less than perfect adherence
Formation and growth of nucleated particles into cloud condensation nuclei: Model-measurement comparison
Aerosol nucleation occurs frequently in the atmosphere and is an important source of particle number. Observations suggest that nucleated particles are capable of growing to sufficiently large sizes that they act as cloud condensation nuclei (CCN), but some global models have reported that CCN concentrations are only modestly sensitive to large changes in nucleation rates. Here we present a novel approach for using long-term size distribution observations to evaluate a global aerosol model's ability to predict formation rates of CCN from nucleation and growth events. We derive from observations at five locations nucleation-relevant metrics such as nucleation rate of particles at diameter of 3 nm (J3), diameter growth rate (GR), particle survival probability (SP), condensation and coagulation sinks, and CCN formation rate (J100). These quantities are also derived for a global microphysical model, GEOS-Chem-TOMAS, and compared to the observations on a daily basis. Using GEOS-Chem-TOMAS, we simulate nucleation events predicted by ternary (with a 10−5 tuning factor) or activation nucleation over one year and find that the model slightly understates the observed annual-average CCN formation mostly due to bias in the nucleation rate predictions, but by no more than 50% in the ternary simulations. At the two locations expected to be most impacted by large-scale regional nucleation, Hyytiälä and San Pietro Capofiume, predicted annual-average CCN formation rates are within 34 and 2% of the observations, respectively. Model-predicted annual-average growth rates are within 25% across all sites but also show a slight tendency to underestimate the observations, at least in the ternary nucleation simulations. On days that the growing nucleation mode reaches 100 nm, median single-day survival probabilities to 100 nm for the model and measurements range from less than 1–6% across the five locations we considered; however, this does not include particles that may eventually grow to 100 nm after the first day. This detailed exploration of new particle formation and growth dynamics adds support to the use of global models as tools for assessing the contribution of microphysical processes such as nucleation to the total number and CCN budget
Charnel practices in medieval England: new perspectives
Studies of English medieval funerary practice have paid limited attention to the curation of human remains in charnel houses. Yet analysis of architectural, archaeological and documentary evidence, including antiquarian accounts, suggests that charnelling was more widespread in medieval England than has hitherto been appreciated, with many charnel houses dismantled at the sixteenth-century Reformation. The survival of a charnel house and its human remains at Rothwell, Northamptonshire permits a unique opportunity to analyse charnel practice at a medieval parish church. Employing architectural, geophysical and osteological analysis, we present a new contextualisation of medieval charnelling. We argue that the charnel house at Rothwell, a subterranean room constructed during the thirteenth century, may have been a particularly sophisticated example of an experiment born out of beliefs surrounding Purgatory. Our approach enables re-evaluation of the surviving evidence for charnel practice in England and enhances wider narratives of medieval charnelling across Europe
Pharmacology of HIV integrase inhibitors
The purpose of this paper is to review recent and relevant pharmacology data for three HIV integrase inhibitors: raltegravir (marketed), dolutegravir and elvitegravir (both in Phase III drug development)
An adaptive array excitation scheme for the unidirectional enhancement of guided waves
Control over the direction of wave propagation allows an engineer to spatially locate defects. When imaging with longitudinal waves, time delays can be applied to each element of a phased array transducer to steer a beam. Because of the highly dispersive nature of guided waves (GWs), this beamsteering approach is suboptimal. More appropriate time delays can be chosen to direct a GW if the dispersion relation of the material is known. Existing techniques, however, need a priori knowledge of material thickness and acoustic velocity, which change as a function of temperature and strain. The scheme presented here does not require prior knowledge of the dispersion relation or properties of the specimen to direct a GW. Initially, a GW is generated using a single element of an array transducer. The acquired waveforms from the remaining elements are then processed and retransmitted, constructively interfering with the wave as it travels across the spatial influence of the transducer. The scheme intrinsically compensates for the dispersion of the waves, and thus can adapt to changes in material thickness and acoustic velocity. The proposed technique is demonstrated in simulation and experimentally. Dispersion curves from either side of the array are acquired to demonstrate the scheme's ability to direct a GW in an aluminum plate. The results show that unidirectional enhancement is possible without a priori knowledge of the specimen using an arbitrary pitch array transducer. The experimental results show a 34-dB enhancement in one direction compared with the other
1/N Effects in Non-Relativistic Gauge-Gravity Duality
We argue that higher-curvature terms in the gravitational Lagrangian lead,
via non-relativistic gauge-gravity duality, to finite renormalization of the
dynamical exponent of the dual conformal field theory. Our argument includes a
proof of the non-renormalization of the Schrodinger and Lifshitz metrics beyond
rescalings of their parameters, directly generalizing the AdS case. We use this
effect to construct string-theory duals of non-relativistic critical systems
with non-integer dynamical exponents, then use these duals to predict the
viscosity/entropy ratios of these systems. The predicted values weakly violate
the KSS bound.Comment: 26 pages, late
- …