53,812 research outputs found
Fermi-liquid effects in the gapless state of marginally thin superconducting films
We present low temperature tunneling density-of-states measurements in Al
films in high parallel magnetic fields. The thickness range of the films, t=6-9
nm, was chosen so that the orbital and Zeeman contributions to their parallel
critical fields were comparable. In this quasi-spin paramagnetically limited
configuration, the field produces a significant suppression of the gap, and at
high fields the gapless state is reached. By comparing measured and calculated
tunneling spectra we are able to extract the value of the antisymmetric
Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density
dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure
Infrared Lighting Does Not Suppress Catch of Codling Moth (Lepidoptera: Tortricidae) in Pheromone-Baited Monitoring Traps
Video cameras are increasingly being used to record insect behaviors in the field over prolonged intervals. A nagging question about crepuscular and nocturnal recordings is whether or not infrared light emitted by such cameras to illuminate the scene influences the behaviors of the subjects or study outcomes. Here we quantified catches of male codling moths, Cydia pomonella (L.), responding to sex pheromone-baited monitoring traps illuminated with infrared, red, white, or no light. No statistically significant differences were found between any of these treatments
On the fourth root prescription for dynamical staggered fermions
With the aim of resolving theoretical issues associated with the fourth root
prescription for dynamical staggered fermions in Lattice QCD simulations, we
consider the problem of finding a viable lattice Dirac operator D such that
(det D_{staggered})^{1/4} = det D. Working in the flavour field representation
we show that in the free field case there is a simple and natural candidate D
satisfying this relation, and we show that it has acceptable locality behavior:
exponentially local with localisation range vanishing ~ (a/m)^{1/2} for lattice
spacing a -> 0. Prospects for the interacting case are also discussed, although
we do not solve this case here.Comment: 29 pages, 2 figures; some revision and streamlining of the
discussions; results unchanged; to appear in PR
Poincare duality for K-theory of equivariant complex projective spaces
We make explicit Poincare duality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation
Orbital Response of Evanescent Cooper Pairs in Paramagnetically Limited Al Films
We report a detailed study of the pairing resonance via tunneling density of
states in ultra-thin superconducting Al films in supercritical magnetic fields.
Particular emphasis is placed on effects of the perpendicular component of the
magnetic field on the resonance energy and magnitude. Though the resonance is
broadened and attenuated by as expected, its energy is shifted upward
linearly with . Extension of the original theory of the resonance to
include strong perpendicular fields shows that at sufficiently large
the overlap of the broadened resonance tail with the underlying degenerate
Fermi sea alters the spectral distribution of the resonance via the exclusion
principle. This leads to the shift of the the resonance feature to higher
energy.Comment: 8 pages, 4 figure
Universal properties of knotted polymer rings
By performing Monte Carlo sampling of -steps self-avoiding polygons
embedded on different Bravais lattices we explore the robustness of
universality in the entropic, metric and geometrical properties of knotted
polymer rings. In particular, by simulating polygons with up to we
furnish a sharp estimate of the asymptotic values of the knot probability
ratios and show their independence on the lattice type. This universal feature
was previously suggested although with different estimates of the asymptotic
values. In addition we show that the scaling behavior of the mean squared
radius of gyration of polygons depends on their knot type only through its
correction to scaling. Finally, as a measure of the geometrical
self-entanglement of the SAPs we consider the standard deviation of the writhe
distribution and estimate its power-law behavior in the large limit. The
estimates of the power exponent do depend neither on the lattice nor on the
knot type, strongly supporting an extension of the universality property to
some features of the geometrical entanglement.Comment: submitted to Phys.Rev.
- …