26 research outputs found

    A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of colorectal carcinoma

    Get PDF
    Aims: CDX2 is widely used as a sensitive and specific immunomarker for colorectal carcinoma (CRC) but neither this sensitivity nor specificity is absolute. This study is the first known comparison of CDX1 and A33 against CDX2 as immunomarkers for CRC. Methods and Results: As a pilot study, whole sections of 51 cases of liver metastatic carcinoma of different origins - colorectum (n=32), breast (n=3), oesophagogastric tract (n=4), lung (n=3), pancreas (n=8), and prostate (n=1) - were immunostained with CDX1, CDX2 and A33. Compared with CDX1, A33 showed higher sensitivity as a CRC immunomarker, greater interobserver reproducibility for assessment of expression, and less background cross-reactivity. Therefore, only A33 was compared with CDX2 for a tissue microarray-based study of primary adenocarcinomas of different origin: CRC (n=55), liver deposits of metastatic CRC (n=60), breast (n=101), lung (n=40), oesophagogastric tract (n=134), ovary (n= 67), pancreas (n= 77), and prostate (n= 56). Combining the whole section and TMA cases of CRC, A33 had a sensitivity of 95.9% and CDX2 a sensitivity of 97.2%. Combining all the whole section and TMA cases of non-colorectal carcinomas, A33 showed 85.4% specificity as a marker of CRC compared to CDX2 which showed a specificity of 64.3%. The higher specificity of A33 as a colorectal carcinoma immunomarker compared with CDX2 was particularly seen amongst pancreatic and ovarian carcinomas. Further, unlike with CDX2, none of the prostatic and lung carcinomas studied showed A33 positivity. Conclusions: A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of CRC

    Current Understanding of Circulating Tumor Cells - Potential Value in Malignancies of the Central Nervous System

    Get PDF
    Detection of circulating tumor cells (CTCs) in the blood via so-called 'liquid biopsies' carries enormous clinical potential in malignancies of the central nervous system (CNS) because of the potential to follow disease evolution with a blood test, without the need for repeat neurosurgical procedures with their inherent risk of patient morbidity. To date studies in non-CNS malignancies, particularly in breast cancer, show increasing reproducibility of detection methods for these rare tumor cells in the circulation. However, no method has yet received full recommendation to use in clinical practice, in part because of lack of a sufficient evidence base regarding clinical utility. In CNS malignancies one of the main challenges is finding a suitable biomarker for identification of these cells, because automated systems such as the widely used Cell Search system are reliant on markers such as the epithelial cell adhesion molecule (EpCAM) which are not present in CNS tumors. This review examines methods for CTC enrichment and detection, and reviews the progress in non-CNS tumors and the potential for using this technique in human brain tumors

    Lymph vessels:the forgotten second circulation in health and disease

    Get PDF
    The lymphatic circulation is still a somewhat forgotten part of the circulatory system. Despite this, novel insights in lymph angiogenesis in health and disease, application of immune markers for lymphatic growth and differentiation and also the introduction of new imaging techniques to visualize the lymphatic circulation have improved our understanding of lymphatic function in both health and disease, especially in the last decade. These achievements yield better understanding of the various manifestations of lymph oedemas and malformations, and also the patterns of lymphovascular spread of cancers. Immune markers that recognize lymphatic endothelium antigens, such as podoplanin, LYVE-1 and Prox-1, can be successfully applied in diagnostic pathology and have revealed (at least partial) lymphatic differentiation in many types of vascular lesion

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore