38 research outputs found

    Functional wiring of hypocretin and LC-NE neurons: implications for arousal.

    Get PDF
    To survive in a rapidly changing environment, animals must sense their external world and internal physiological state and properly regulate levels of arousal. Levels of arousal that are abnormally high may result in inefficient use of internal energy stores and unfocused attention to salient environmental stimuli. Alternatively, levels of arousal that are abnormally low may result in the inability to properly seek food, water, sexual partners, and other factors necessary for life. In the brain, neurons that express hypocretin neuropeptides may be uniquely posed to sense the external and internal state of the animal and tune arousal state according to behavioral needs. In recent years, we have applied temporally precise optogenetic techniques to study the role of these neurons and their downstream connections in regulating arousal. In particular, we have found that noradrenergic neurons in the brainstem locus coeruleus (LC) are particularly important for mediating the effects of hypocretin neurons on arousal. Here, we discuss our recent results and consider the implications of the anatomical connectivity of these neurons in regulating the arousal state of an organism across various states of sleep and wakefulness

    Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation.

    Get PDF
    Appropriate motor control is critical for normal life, and requires hypothalamic hypocretin/orexin neurons (HONs). HONs are slowly regulated by nutrients, but also display rapid (subsecond) activity fluctuations in vivo. The necessity of these activity bursts for sensorimotor control and their roles in specific phases of movement are unknown. Here we show that temporally-restricted optosilencing of spontaneous or sensory-evoked HON bursts disrupts locomotion initiation, but does not affect ongoing locomotion. Conversely, HON optostimulation initiates locomotion with subsecond delays in a frequency-dependent manner. Using 2-photon volumetric imaging of activity of >300 HONs during sensory stimulation and self-initiated locomotion, we identify several locomotion-related HON subtypes, which distinctly predict the probability of imminent locomotion initiation, display distinct sensory responses, and are differentially modulated by food deprivation. By causally linking HON bursts to locomotion initiation, these findings reveal the sensorimotor importance of rapid spontaneous and evoked fluctuations in HON ensemble activity

    Sleep: the sound of a local alarm clock.

    No full text
    Besides the master clock located in the suprachiasmatic nucleus (SCN) of the brain, additional clocks are distributed across the central nervous system and the body. The role of these 'secondary' clocks remains unclear. A new study shows that the lack of an internal clock in histamine neurons profoundly perturbs sleep

    Cell Type-Specific Targeting Strategies for Optogenetics

    No full text
    Abstract View references (89) Optogenetic techniques allow versatile, cell type-specific light-based control of cellular activity in diverse set of cells, circuits, and brain structures. Optogenetic actuators are genetically encoded light-sensitive membrane proteins that can be selectively introduced into cellular circuits in the living brain using a variety of genetic approaches. Gene targeting approaches used in optogenetic studies vary greatly in their specificity, their spatial coverage, the level of transgene expression and their potential adverse effects on neuronal cell health. Here, we describe the major gene targeting approaches utilized in optogenetics and provide a simple set of guidelines through which these approaches can be evaluated when designing an in vitro or in vivo optogenetic study. © Springer Science+Business Media LLC 2018

    MCH neurons: vigilant workers in the night

    No full text

    Sleep to Survive Predators.

    No full text

    Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo.

    No full text
    Optogenetic tools have revolutionized insights into the fundamentals of brain function. This is particularly true for our current understanding of sleep-wake regulation and sleep rhythms. This is illustrated here through a comprehensive and step-by-step review over the major brain areas involved in transitions between sleep and wake states and in sleep rhythmogenesis

    Sleep and metabolism: shared circuits, new connections.

    No full text
    Association between sleep disturbances and hormonal imbalances can result in metabolic disorders, including obesity and diabetes. The hypothalamus is likely to play a part in these pathophysiological conditions because it contains sleep-wake circuits that are sensitive to metabolic hormones, including leptin and ghrelin. Thus, shared hypothalamic circuits such as the hypocretin and melanin-concentrating hormone systems are strong candidates for mediating both sleep and metabolic imbalances. This review reveals new roles for these systems as sensors and effectors of sleep and wakefulness, and discusses their plasticity in regulating sleep and energy balance. New optical tools that remotely control neuronal circuit activity provide an effective means to understand the cooperativity of shared circuits in regulating hypothalamic functions such as sleep and metabolism
    corecore