3,432 research outputs found

    The Impact of the Convective Blueshift Effect on Spectroscopic Planetary Transits

    Full text link
    We present here a small anomalous radial velocity (RV) signal expected to be present in RV curves measured during planetary transits. This signal is induced by the convective blueshift (CB) effect --- a net blueshift emanating from the stellar surface, resulting from a larger contribution of rising hot and bright gas relative to the colder and darker sinking gas. Since the CB radial component varies across the stellar surface, the light blocked by the planet during a transit will have a varying RV component, resulting in a small shift of the measured RVs. The CB-induced anomalous RV curve is different than, and independent of, the well known Rossiter-McLaughlin (RM) effect, where the latter is used for determining the sky-projected angle between the host star rotation axis and the planet's orbital angular momentum axis. The observed RV curve is the sum of the CB and RM signals, and they are both superposed on the orbital Keplerian curve. If not accounted for, the presence of the CB RV signal in the spectroscopic transit RV curve may bias the estimate of the spin-orbit angle. In addition, future very high precision RVs will allow the use of transiting planets to study the CB of their host stars.Comment: v2: replaced with accepted versio

    Communitarianism and the Roberts Court: The Sequel

    Get PDF

    From localized to well-mixed: How commuter interactions shape disease spread

    Full text link
    Interactions between commuting individuals can lead to large-scale spreading of rumors, ideas, or disease, even though the commuters have no net displacement. The emergent dynamics depend crucially on the commuting distribution of a population, that is how the probability to travel to a destination decays with distance from home. Applying this idea to epidemics, we will demonstrate the qualitatively different infection dynamics emerging from populations with different commuting distributions. If the commuting distribution is exponentially localized, we recover a reaction-diffusion system and observe Fisher waves traveling at a speed proportional to the characteristic commuting distance. If the commuting distribution has a long tail, then no finite-velocity waves can form, but we show that, in some regimes, there is nontrivial spatial dependence that the well-mixed approximation neglects. We discuss how, in all cases, an initial dispersal-dominated regime can allow the disease to go undetected for a finite amount of time before exponential growth takes over. This "offset time" is a quantity of huge importance for epidemic surveillance and yet largely ignored in the literature.Comment: 26 pages, 15 figures; made minor edits for clarit

    Resolving the Surfaces of Extrasolar Planets With Secondary Eclipse Light Curves

    Full text link
    We present a method that employs the secondary eclipse light curves of transiting extrasolar planets to probe the spatial variation of their thermal emission. This technique permits an observer to resolve the surface of the planet without the need to spatially resolve its central star. We evaluate the feasibility of this technique for the HD 209458 system [..]. We consider two representations of the planetary thermal emission; a simple model parameterized by a sinusoidal dependence on longitude and latitude, as well as the results of a three-dimensional dynamical simulation of the planetary atmosphere previously published by Cooper & Showman. We find that observations of the secondary eclipse light curve are most sensitive to a longitudinal offset in the geometric and photometric centroids of the hemisphere of the planet visible near opposition. To quantify this signal, we define a new parameter, the ``uniform time offset,'' which measures the time lag between the observed secondary eclipse and that predicted by a planet with a uniform surface flux distribution. We compare the predicted amplitude of this parameter for HD 209458 with the precision with which it could be measured with IRAC. We find that IRAC observations at 3.6um a single secondary eclipse should permit sufficient precision to confirm or reject the Cooper & Showman model of the surface flux distribution for this planet. We quantify the signal-to-noise ratio for this offset in the remaining IRAC bands (4.5um, 5.8um, and 8.0um), and find that a modest improvement in photometric precision (as might be realized through observations of several eclipse events) should permit a similarly robust detection.Comment: AASTeX 5.2, 24 pages, 5 figures, accepted for publication in ApJ; v2: clarifications, updated to version accepted by ApJ; v3: try to reduce spacin

    ERRATUM: “A SMALLER RADIUS FOR THE TRANSITING EXOPLANET WASP-10b” (2009, ApJ, 692, L100)

    Get PDF
    We have identified an error in our Heliocentric Julian Dates (HJDs) of observation caused by incorrect input to the code used to convert from JD to HJD. The times in Table 1 have been corrected by adding 0.006382 day to each entry in the original Column 1. Similarly, the measured mid-transit time in Table 2 has been changed to Tc = 2454664.037295. We also note that the header in Column 1 of Table 1 is incorrect. The label should read HJD, rather than BJD. The updated Tables 1 and 2 have been included herein. This error has no impact on our main conclusions. We thank Pedro Valdes Sada and Gracjan Maciejewski for pointing out the incorrect mid-transit time

    MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package

    Get PDF
    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scattering experiments with non-trivial samples in time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.Comment: 34 pages, 14 figure

    The EVIL-MC Model for Ellipsoidal Variations of Planet-Hosting Stars and Applications to the HAT-P-7 System

    Full text link
    We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model. We employ several approximations appropriate for planetary systems to substantially increase the computational efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7 system, an F-type star orbited by a nearly Jupiter-mass companion. Our analysis corroborates previous estimates of the planet-star mass ratio q = (1.10 +/- 0.06) x 10^(-3), and we have revised the planet's dayside brightness temperature to 2680 +10/-20 K. We also find a large difference between the day- and nightside planetary flux, with little nightside emission. Preliminary dynamical+radiative modeling of the atmosphere indicates this result is qualitatively consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar systems, especially given the limited resources for follow-up and characterization of these systems. However, as we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate modeling of the photometric contribution from the stellar ellipsoidal variation.Comment: Accepted to ApJ; minor revisions to original submission; An IDL version of the EVIL-MC model is publicly available at http://www.lpl.arizona.edu/~bjackson/idl_code/index.htm

    A Survey of Alkali Line Absorption in Exoplanetary Atmospheres

    Full text link
    We obtained over 90 hours of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope (HET). Observations were taken in transit and out of transit, and we analyzed the differenced spectra---i.e., the transmission spectra---to inspect it for absorption at the wavelengths of the neutral sodium (\ion{Na}{1}) doublet at λλ5889,5895\lambda\lambda5889, 5895 and neutral potassium (\ion{K}{1}) at λ7698\lambda7698. We used the transmission spectrum at \ion{Ca}{1} λ6122\lambda6122---which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres---as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantity these systematic errors. In a reanalysis of the same dataset using a reduction and analysis pipeline that was derived independently, we confirm the previously seen \ion{Na}{1} absorption in HD 189733b at a level of (5.26±1.69)×104(-5.26\pm1.69)\times10^{-4} (the average value over a 12 \AA{} integration band to be consistent with previous authors). Additionally, we tentatively confirm the \ion{Na}{1} absorption seen in HD 209458b (independently by multiple authors) at a level of (2.63±0.81)×104(-2.63\pm0.81)\times10^{-4}, though the interpretation is less clear. Furthermore, we find \ion{Na}{1} absorption of (3.16±2.06)×104(-3.16\pm2.06)\times10^{-4} at <3σ<3\sigma in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (\ion{Na}{1} in HD 147506b and \ion{Ca}{1} and \ion{K}{1} in all four targets) are significant to 3σ\geq 3\sigma, although we observe some features that we argue are primarily artifacts.Comment: 38 total pages (preprint format), 9 color figures, 4 tables, accepted for publication in Ap

    Tidal Heating Models for the Radii of the Inflated Transiting Giant Planets WASP-4b, WASP-6b, WASP-12b, and TrES-4

    Full text link
    In order to explain the inflated radii of some transiting extrasolar giant planets, we investigate a tidal heating scenario for the inflated planets WASP-4b, WASP-6b, WASP-12b, WASP-15b, and TrES-4. To do so, we assume that they retain a nonzero eccentricity, possibly by dint of continuing interaction with a third body. We calculate the amount of extra heating in the envelope that is then required to fit the radius of each planet, and we explore how this additional power depends on the planetary atmospheric opacity and on the mass of a heavy-element central core. There is a degeneracy between the core mass McoreM_{\rm core} and the heating E˙heating\dot{E}_{\rm heating}. Therefore, in the case of tidal heating, there is for each planet a range of the couple {Mcore,e2/Qp}\{M_{\rm core},e^2/Q'_p\} that can lead to the same radius, where QpQ'_p is the tidal dissipation factor and ee is the eccentricity. With this in mind, we also investigate the case of the non-inflated planet HAT-P-12b, which can admit solutions combining a heavy-element core and tidal heating. A substantial improvement of the measured eccentricities of such planetary systems could simplify this degeneracy by linking the two unknown parameters {Mcore,Qp}\{M_{\rm core},Q'_p\}. Further independent constraints on either of these parameters would, through our calculations, constrain the other.Comment: Accepted in ApJ; 17 pages, 3 figures, 6 tables (emulateapj format); expanded explanatory tex

    The Broadband Infrared Emission Spectrum of the Exoplanet TrES-3

    Get PDF
    We use the Spitzer Space Telescope to estimate the dayside thermal emission of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two secondary eclipses and find relative eclipse depths of 0.00346 +/- 0.00035, 0.00372 +/- 0.00054, 0.00449 +/- 0.00097, and 0.00475 +/- 0.00046, respectively in the 4 IRAC bandpasses. We combine our results with the earlier K band measurement of De Mooij et al. (2009), and compare them with models of the planetary emission. We find that the planet does not require the presence of an inversion layer in the high atmosphere. This is the first very strongly irradiated planet that does not have a temperature inversion, which indicates that stellar or planetary characteristics other than temperature have an important impact on temperature inversion. De Mooij & Snellen (2009) also detected a possible slight offset in the timing of the secondary eclipse in K band. However, based on our 4 Spitzer channels, we place a 3sigma upper limit of |ecos(w)| < 0.0056 where e is the planets orbital eccentricity and w is the longitude of the periastron. This result strongly indicates that the orbit is circular, as expected from tidal circularization theory.Comment: Accepted by Ap
    corecore