930 research outputs found
Control of Daily Transcript Oscillations in Drosophila by Light and the Circadian Clock
The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12- to 48-h period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many light-responsive transcripts are preferentially expressed in the compound eyes and the phospholipase C component of phototransduction, NORPA (no receptor potential), is required for their light-dependent regulation. Although there is evidence for the existence of multiple molecular clock circuits in cyanobacteria, protists, plants, and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod
Eight-Dimensional Mid-Infrared/Optical Bayesian Quasar Selection
We explore the multidimensional, multiwavelength selection of quasars from
mid-IR (MIR) plus optical data, specifically from Spitzer-IRAC and the Sloan
Digital Sky Survey (SDSS). We apply modern statistical techniques to combined
Spitzer MIR and SDSS optical data, allowing up to 8-D color selection of
quasars. Using a Bayesian selection method, we catalog 5546 quasar candidates
to an 8.0 um depth of 56 uJy over an area of ~24 sq. deg; ~70% of these
candidates are not identified by applying the same Bayesian algorithm to
4-color SDSS optical data alone. Our selection recovers 97.7% of known type 1
quasars in this area and greatly improves the effectiveness of identifying
3.5<z<5 quasars. Even using only the two shortest wavelength IRAC bandpasses,
it is possible to use our Bayesian techniques to select quasars with 97%
completeness and as little as 10% contamination. This sample has a photometric
redshift accuracy of 93.6% (Delta Z +/-0.3), remaining roughly constant when
the two reddest MIR bands are excluded. While our methods are designed to find
type 1 (unobscured) quasars, as many as 1200 of the objects are type 2
(obscured) quasar candidates. Coupling deep optical imaging data with deep
mid-IR data could enable selection of quasars in significant numbers past the
peak of the quasar luminosity function (QLF) to at least z~4. Such a sample
would constrain the shape of the QLF and enable quasar clustering studies over
the largest range of redshift and luminosity to date, yielding significant
gains in our understanding of quasars and the evolution of galaxies.Comment: 49 pages, 14 figures, 7 tables. AJ, accepte
AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.
Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (
Variational Mass Perturbation Theory for Light-Front Bound-State Equations
We investigate the mesonic light-front bound-state equations of the 't Hooft
and Schwinger model in the two-particle, i.e. valence sector, for small fermion
mass. We perform a high precision determination of the mass and light-cone wave
function of the lowest lying meson by combining fermion mass perturbation
theory with a variational approach. All calculations are done entirely in the
fermionic representation without using any bosonization scheme. In a
step-by-step procedure we enlarge the space of variational parameters. For the
first two steps, the results are obtained analytically. Beyond that we use
computer algebraic and numerical methods. We achieve good convergence so that
the calculation of the meson mass squared can be extended to third order in the
fermion mass. Within the numerical treatment we include higher Fock states up
to six particles. Our results are consistent with all previous numerical
investigations, in particular lattice calculations. For the massive Schwinger
model, we find a small discrepancy (less than 2 percent) in comparison with
known bosonization results. Possible resolutions of this discrepancy are
discussed.Comment: some points clarified, representation straightened, to appear in
Phys. Rev. D, 31 pages, Latex, REVTeX, epsfig, 3 postscript figures include
THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. III. SUNYAEV-ZEL'DOVICH MASSES OF GALAXY CLUSTERS AT z ~ 1
We present CARMA 30 GHz Sunyaev–Zel'dovich (SZ) observations of five high-redshift (z [> over ~] 1), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured toward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range M[subscript 200] ≈ 2-6 X 10[superscript 14] M[subscript ʘ. Three of these are among the most massive clusters found to date at z [> over ~] 1, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least z = 1.3. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to z ≈ 1.5 and beyond
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
The AllWISE Motion Survey and the Quest for Cold Subdwarfs
The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a "subdwarf gap" at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list—WISEA J154045.67–510139.3—is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products
The CatWISE Preliminary Catalog: Motions from and Data
CatWISE is a program to catalog sources selected from combined
and all-sky survey data at 3.4 and 4.6 m (W1 and W2). The
CatWISE Preliminary Catalog consists of 900,849,014 sources measured in data
collected from 2010 to 2016. This dataset represents four times as many
exposures and spans over ten times as large a time baseline as that used for
the AllWISE Catalog. CatWISE adapts AllWISE software to measure the sources in
coadded images created from six-month subsets of these data, each representing
one coverage of the inertial sky, or epoch. The catalog includes the measured
motion of sources in 8 epochs over the 6.5 year span of the data. From
comparison to , the SNR=5 limits in magnitudes in the Vega
system are W1=17.67 and W2=16.47, compared to W1=16.96 and W2=16.02 for
AllWISE. From comparison to , CatWISE positions have typical
accuracies of 50 mas for stars at W1=10 mag and 275 mas for stars at W1=15.5
mag. Proper motions have typical accuracies of 10 mas yr and 30 mas
yr for stars with these brightnesses, an order of magnitude better than
from AllWISE. The catalog is available in the WISE/NEOWISE Enhanced and
Contributed Products area of the NASA/IPAC Infrared Science Archive.Comment: 53 pages, 20 figures, 5 tables. Accepted by ApJ
- …