6 research outputs found

    Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis

    No full text
    Maintaining control over inflammatory processes represents a paradox for viral pathogens. Although many viruses induce host inflammatory responses to facilitate infection, control is necessary to avoid overactivation. One way is through the manipulation of proinflammatory chemokine levels, both host and viral. Murine cytomegalovirus (MCMV), a model betaherpesvirus, encodes a viral C-C chemokine, MCK2, which promotes host inflammatory responses and incorporates into virions to facilitate viral dissemination. Here, we show that the activity of M48, the conserved MCMV deubiquitinating enzyme (DUB), regulates MCK2 levels during infection. Inactivation of M48 DUB activity results in viral attenuation and exacerbates virally induced, MCK2-dependent inflammatory responses. M48 DUB activity also influences MCK2 incorporation into virions. Importantly, attenuation of DUB-mutant virus acute replication in vitro and in vivo is largely ameliorated by targeted deletion of MCK2. Thus, uncontrolled MCK2 levels appear to mediate DUB-mutant virus attenuation in specific tissues or cell types. This demonstrates that MCMV M48 DUB activity plays a previously unappreciated role in controlling MCK2 levels, thereby managing MCK2-dependent processes. These findings reveal a novel intrinsic control mechanism of virally induced inflammation and support the identification of betaherpesvirus DUBs as possible new targets for antiviral therapies

    Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection

    Get PDF
    Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is limited knowledge about viruses targeting the innate DNA-sensing pathway, as well as how the innate system impacts on the latent reservoir of herpesvirus infections. In this article, we report that murine gammaherpesvirus 68 (MHV68), in contrast to alpha- and beta-herpesviruses, induces very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in the control of MHV68 infections in vivo. Similarly, Kaposi\u27s sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA-sensing pathways. Interestingly, an MHV68 mutant lacking deubiquitinase (DUB) activity, embedded within the large tegument protein open reading frame (ORF)64, gained the capacity to stimulate the DNA-activated stimulator of IFN genes (STING) pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and absent in melanoma 2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which, instead, localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild-type, but not STING-deficient, mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA-sensing pathway, which, in the MHV68 model, facilitates establishment of infections
    corecore