5 research outputs found

    Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models

    No full text
    Optical satellite imagery has been widely used to monitor leaf area index (LAI). However, most studies have focussed on single- or dual-source data, thus making little use of a growing repository of freely available optical imagery. Hence this study has evaluated the feasibility of quad-source optical satellite imagery involving Landsat-8, Sentinel-2A, China’s environment satellite constellation (HJ-1 A and B) and Gaofen-1 (GF-1) in modelling rice green LAI over a test site located in southeast China at two growing seasons. With the application of machine learning regression models including Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbour (k-NN) and Gradient Boosting Decision Tree (GBDT), results indicated that regression models based on an ensemble of decision trees (RF and GBDT) were more suitable for modelling rice green LAI. The current study has demonstrated the feasibility of quad-source optical imagery in modelling rice green LAI and this is relevant for cloudy areas

    Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets

    No full text
    SVM and RF are widely used in rice mapping. However, their performance with single and different combinations of satellite datasets is rarely reported. Hence we report their rice mapping accuracies for two seasons using Sentinel-1A, Landsat-8 and Sentinel-2A images. The VH and VV polarizations of Sentinel-1A, and two spectral indices (SIs) of Landsat-8 and Sentine1-2A were used to obtain seven datasets (VH, VV, SI, VHVV, VHSI, VVSI and VHVVSI), and on which SVM and RF were applied and accuracies were assessed. VHSI showed the highest overall accuracy for both algorithms in both years. SVM with VHSI had a slightly higher accuracy (90.8%) than RF with VHSI (89.2%) in 2015 while in 2016 RF with VHSI showed a slightly higher accuracy (95.2%) than SVM with VHSI (93.4%). Although they produced equivalent accuracies within years, RF is more sensitive to additional data, given a 6.0% increase from 2015 to 2016 with VHSI

    Evaluation of machine learning models for rice dry biomass estimation and mapping using quad-source optical imagery

    No full text
    Several machine learning regression models have been advanced for the estimation of crop biophysical parameters with optical satellite imagery. However, literature on the comparative performances of such models is still limited in range and scope, especially under multiple data sources, despite the potential of multi-source imagery to improving crop monitoring in cloudy areas. To fill in this knowledge gap, this study explored the synergistic use of Landsat-8, Sentinel-2A, China’s environment and disaster monitoring and forecasting satellites (HJ-1 A and B) and Gaofen-1 (GF-1) data to evaluate four machine learning regression models that include Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), and Gradient Boosting Decision Tree (GBDT), for rice dry biomass estimation and mapping. Taking a major rice cultivation area in southeast China as case study during the 2016 and 2017 growing seasons, a cross-calibrated time series of the Enhanced Vegetation Index (EVI) was obtained from the quad-source optical imagery and on which the aforementioned models were applied, respectively. Results indicate that in the before rice heading scenario, the most accurate dry biomass estimates were obtained by the GBDT model (R2 of 0.82 and RMSE of 191.8 g/m2) followed by the RF model (R2 of 0.79 and RMSE of 197.8 g/m2). After heading, the k-NN model performed best (R2 of 0.43 and RMSE of 452.1 g/m2) followed by the RF model (R2 of 0.42 and RMSE of 464.7 g/m2). Whist the k-NN model performed least in the before heading scenario, SVM performed least in the after heading scenario. These findings may suggest that machine learning regression models based on an ensemble of decision trees (RF and GBDT) are more suitable for the estimation of rice dry biomass, at least with optical satellite imagery. Studies that would extend the evaluation of these machine learning models, to other parameters like leaf area index, and to microwave imagery, are hereby recommended
    corecore