4,827 research outputs found

    Agassiz, Garman, Albatross, and the Collection of Deep-sea Fishes

    Get PDF
    The first of Alexander Agassiz’ voyages on the U.S. Fish Commission steamer Albatross in 1891 yielded significant scientific results. This paper reviews the background of the voyage, including the career path that led Agassiz to the back deck of the Albatross. We also give a brief account of the life and work of Samuel Garman. Garman wrote up the ichthyological material from this Albatross voyage in a magnificent book on deep-sea fishes published in 1899. This book was exceptional in its coverage, anatomical detail, and recognition of phylogenetically important morphology

    Bone Density Variation in Rattails (Macrouridae,Gadiformes): Buoyancy, Depth, Body Size, and Feeding

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Extreme abiotic factors in deep-sea environments, such as near-freezing temperatures, low light, and high hydrostatic pressure, drive the evolution of adaptations that allow organisms to survive under these conditions. Pelagic and benthopelagic fishes that have invaded the deep sea face physiological challenges from increased compression of gasses at depth, which limits the use of gas cavities as a buoyancy aid. One adaptation observed in deep-sea fishes to increase buoyancy is a decrease of high-density tissues. In this study, we analyze mineralization of high-density skeletal tissue in rattails (family Macrouridae), a group of widespread benthopelagic fishes that occur from surface waters to greater than 7000 m depth. We test the hypothesis that rattail species decrease bone density with increasing habitat depth as an adaptation to maintaining buoyancy while living under high hydrostatic pressures. We performed micro-computed tomography (micro-CT) scans on 15 species and 20 specimens of rattails and included two standards of known hydroxyapatite concentration (phantoms) to approximate voxel brightness to bone density. Bone density was compared across four bones (eleventh vertebra, lower jaw, pelvic girdle, and first dorsal-fin pterygiophore). On average, the lower jaw was significantly denser than the other bones. We found no correlation between bone density and depth or between bone density and phylogenetic relationships. Instead, we observed that bone density increases with increasing specimen length within and between species. This study adds to the growing body of work that suggests bone density can increase with growth in fishes, and that bone density does not vary in a straightforward way with depth

    A new genus and species of clingfish from the Rangitāhua Kermadec Islands of New Zealand (Teleostei, Gobiesocidae)

    Get PDF
    Flexor incus, new genus and species, is described from 15 specimens (14.0–27.2 mm SL) collected from shallow (0–9 meters) intertidal and sub-tidal waters of the Rangitāhua Kermadec Islands, New Zealand. The new taxon is distinguished from all other members of the Gobiesocidae by a combination of characters, including a heterodont dentition comprising both conical and distinct incisiviform teeth that are laterally compressed with a strongly recurved cusp, an oval-shaped opening between premaxillae, a double adhesive disc with a well-developed articulation between basipterygia and ventral postcleithra, and many reductions in the cephalic lateral line canal system. The new taxon is tentatively placed within the subfamily Diplocrepinae but shares a number of characteristics of the oral jaws and the adhesive disc skeleton with certain members of the Aspasminae and Diademichthyinae

    Distribution, composition and functions of gelatinous tissues in deep-sea fishes

    Get PDF
    Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or around the spine. We document the distribution of gelatinous tissues across fish families (approx. 200 species in ten orders), then review and investigate their composition and function. Gelatinous tissues from nine species were analysed for water content (96.53 ± 1.78% s.d.), ionic composition, osmolality, protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate (0.61 ± 0.28%). Results suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus their lower density than seawater may contribute to buoyancy in some species. We also propose a new hypothesis: gelatinous tissues, which are inexpensive to grow, may sometimes be a method to increase swimming efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to analyse the influence of gelatinous tissues on locomotory performance. The model swam faster with a watery layer, representing gelatinous tissue, around the tail than without. Results suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea fish locomotion. © 2017 The Authors
    corecore