99 research outputs found

    Synthesis and applications of cyclonucleosides: an update (2010–2023)

    Get PDF
    Cyclonucleosides are a group of nucleoside derivatives which, in addition to the classical N-glycosidic bond, have an additional covalent bond (linker, bridge) in their structure, which connects the heterocyclic base and sugar ring. The majority of them have been discovered in the laboratory; however, few such compounds have also been found in natural sources, including metabolites of sponges or radical damage occurring in nucleic acids. Due to their structural properties—rigid, fixed conformation—they have found wide applications in medicinal chemistry and biochemistry as biocides as well as enzyme inhibitors and molecular probes. They have also found use as convenient synthetic tools for the preparation of new nucleoside analogues, enabling structural modifications of both the sugar ring and heterocyclic base. This review summarizes the recent progress in the synthesis of various purine and pyrimidine cyclonucleosides using diverse chemical approaches based on radical, “click”, metal-mediated, and other types of reactions. It also presents recent reports concerning possible applications in medicinal chemistry, as well as their applications as valuable key intermediates in the synthesis of sugar- and base-modified nucleoside analogues and heterocyclic compounds

    Antibacterial Peptide Nucleic Acids—Facts and Perspectives

    Get PDF
    Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug‐resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene‐specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA

    Unsymmetrically Substituted Dibenzo[b,f][1,5]-diazocine-6,12(5H,11H)dione—A Convenient Scaffold for Bioactive Molecule Design

    Get PDF
    A novel approach for the synthesis of unsymmetrically substituted dibenzo[b,f][1,5]diazocine-6,12(5H,11H)diones has been developed. This facile three-step method uses variously substituted 1H-benzo[d][1,3]oxazine-2,4-diones (isatoic anhydrides) and 2-aminobenzoic acids as a starting materials. The obtained products were further transformed into N-alkyl-, N-acetyl- and dithio analogues. Developed procedures allowed the synthesis of unsymmetrical dibenzo[b,f][1,5]diazocine-6,12(5H,11H)diones and three novel heterocyclic scaffolds: benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)dione, pyrido[3,2-c][1,5]benzodiazocine-5,11(6H,12H)-dione and pyrazino[3,2-c][1,5]benzodiazocine-6,12(5H,11H)dione. For 11 of the compounds crystal structures were obtained. The preliminary cytotoxic effect against two cancer (HeLa, U87) and two normal lines (HEK293, EUFA30) as well as antibacterial activity were determined. The obtained dibenzo[b,f][1,5]diazocine(5H,11H)6,12-dione framework could serve as a privileged structure for the drug design and development

    Comparison of the profiles of non-glycosylated triterpenoids from leaves of plants of selected species of genus Dioscorea

    Get PDF
    Remarkable qualitative and quantitative differences in non-glycosylated triterpenoid profiles of twelve Dioscorea spp. leaves were demonstrated with the use of GC-MS/FID analysis. The total content of tetracyclic triterpenoids and their esters ranged from 397 μg/g of dry leaf weight in D. bulbifera to 762 μg/g d.w. in D. discolor and 777 μg/g d.w in D. alata. Three main phytosterols, i.e. campesterol (1), sitosterol (2) and stigmasterol (3) were found in extracts from all analyzed species in total amount ranging from 316 μg/g in D. bulbifera to 676 μg/g of dry leaf weight in D. hispida, with either sitosterol (2) or stigmasterol (3) as predominant in the profile. Extracts from D. hispida and D. purpurea leaves were distinguished from the others by particular high amount of campesterol (1). In the majority of the species, except for D. caucasica, other tetracyclic triterpenoids were found: cycloartanol (4), 24-methylenecycloartanol (5) and cycloeucalenol (6). Less common steroids, stigmastan-3-en-6β-ol (7) and ergosta-7,22-dien-3β-ol (8) were detected in D. japonica. The significant content (992 μg/g) of pentacyclic triterpenoids of ursane, oleanane, taraxastane and taraxerene (friedooleanane)-type carbon skeletons, i.e. α-amyrin (9), β-amyrin (10), taraxasterol (11) and taraxerol (12), respectively, was found in D. caucasica. The obtained results supplement the knowledge of biochemical diversity of Dioscorea genus

    Unsymmetrically-Substituted 5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione Scaffold—A Useful Tool for Bioactive Molecules Design

    Get PDF
    Unsymmetrically N-substituted and N,N’-disubstituted 5,12-dihydrodibenzo [b,f][1,4]diazocine-6,11-diones were synthesized in the new protocol. The desired modifications of the dibenzodiazocine scaffold were introduced at the stages of proper selection of building blocks as well as post-cyclization modifications with alkylation or acylation agents, expanding the structural diversity and possible applications of synthesized molecules. The extension of developed method resulted in the synthesis of novel: tricyclic 5,10-dihydrobenzo[b]thieno[3,4-f][1,4]diazocine-4,11-dione scaffold and fused pentacyclic framework possessing two benzodiazocine rings within its structure. Additionally, the unprecedented rearrangement of 5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-diones to 2-(2-aminophenyl)isoindoline-1,3-diones was observed under the basic conditions in the presence of sodium hydride for secondary dilactams. The structures of nine synthesized products have been established by single-crystal X-ray diffraction analysis. Detailed crystallographic analysis of the investigated tri- and pentacyclic systems has shed more light on their structural features. One cell line derived from non-cancerous cells (EUFA30—human fibroblasts) and three tumor cells (U87—human primary glioblastoma, HeLa—cervix adenocarcinoma, BICR18—laryngeal squamous cell carcinoma) were used to determine the cytotoxic effect of the newly synthesized compounds. Although these compounds showed a relatively weak cytotoxic effect, the framework obtained for 5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione could serve as a convenient privilege structure for the design and development of novel bioactive molecules suitable for drug design, development and optimization programs

    Internalization of the Aspergillus nidulans AstA Transporter into Mitochondria Depends on Growth Conditions, and Affects ATP Levels and Sulfite Oxidase Activity

    Get PDF
    The astA gene encoding an alternative sulfate transporter was originally cloned from the genome of the Japanese Aspergillus nidulans isolate as a suppressor of sulfate permease-deficient strains. Expression of the astA gene is under the control of the sulfur metabolite repression system. The encoded protein transports sulfate across the cell membrane. In this study we show that AstA, having orthologs in numerous pathogenic or endophytic fungi, has a second function and, depending on growth conditions, can be translocated into mitochondria. This effect is especially pronounced when an astA-overexpressing strain grows on solid medium at 37 °C. AstA is also recruited to the mitochondria in the presence of mitochondria-affecting compounds such as menadione or antimycin A, which are also detrimental to the growth of the astA-overexpressing strain. Disruption of the Hsp70–Porin1 mitochondrial import system either by methylene blue, an Hsp70 inhibitor, or by deletion of the porin1-encoding gene abolishes AstA translocation into the mitochondria. Furthermore, we observed altered ATP levels and sulfite oxidase activity in the astA-overexpressing strain in a manner dependent on sulfur sources. The presented data indicate that AstA is also involved in the mitochondrial sulfur metabolism in some fungi, and thereby indirectly manages redox potential and energy state

    Synthesis and Investigation of Anti-tumor Properties of Novel, Bicyclic Furopyrimidine, Pyrrolopyrimidine and Pyrimidopyridazine Nucleoside Analogues

    Get PDF
    A series of nine hitherto unknown bicylic pyrimidine nucleoside analogues (BCNAs) bearing bicyclic furo[2,3-d]pyrimidin-2(3H)-one, 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one and 5,6-dihydropyrimido[4,5-c]pyridazin-7(8H)-one bases were prepared in a straightforward approach. The synthesised compounds posses β-D-rybofuranose or β-D-2-deoxyrybofuranose or β-D-arabinofuranose moieties attached to each of the heterocylic ring systems. This is one of a few examples of synthesis of pyrrolo[2,3-d]pyrimidin-2(7H)-one and dihydropyrimido[4,5-c]pyridazin-7(8H)-one nucleosides, and the first example of such nucleosides possessing arabinose moiety. A key synthetic step was a Sonogashira coupling reaction. For coupling with 4-phenyl-1-butyne, we used deprotected 5-iodouridine, 2’-deoxy-5-iodouridine, and 5-iodoarabinouridine and this reaction was followed by cycloisomerization and subsequent conversion of the furane ring into a pyrole ring or a pyridiazine. This approach resulted in the creation of small library of compounds, which were evaluated for their antiproliferative properties against HL-60 and Jurkat E6.1 cell lines. Of all tested compounds, only 3-(β-D-rybofuranosyl)-6-(2-phenylethyl)furo[2,3-d]pyrimidin-2(3H)-one exhibited weak anti-proliferative activity, with IC50 values of 54 and 81 µM for HL-60 and Jurkat E6.1 cells, respectively

    The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ

    Get PDF
    Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme

    Improved HDAC Inhibition, Stronger Cytotoxic Effect and Higher Selectivity against Leukemias and Lymphomas of Novel, Tricyclic Vorinostat Analogues

    Get PDF
    Histone deacetylase (HDAC) inhibitors are a class of drugs used in the cancer treatment. Here, we developed a library of 19 analogues of Vorinostat, an HDAC inhibitor used in lymphomas treatment. In Vorinostat, we replaced the hydrophobic phenyl group with various tricyclic ‘caps’ possessing a central, eight-membered, heterocyclic ring, and investigated the HDAC activity and cytotoxic effect on the cancer and normal cell lines. We found that 3 out of the 19 compounds, based on dibenzo[b,f]azocin-6(5H)-one, 11,12-dihydrodibenzo[b,f]azocin- 6(5H)-one, and benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)-dione scaffolds, showed better HDACs inhibition than the referenced Vorinostat. In leukemic cell line MV4-11 and in the lymphoma cell line Daudi, three compounds showed lower IC50 values than Vorinostat. These compounds had higher activity and selectivity against MV4-11 and Daudi cell lines than reference Vorinostat. We also observed a strong correlation between HDACs inhibition and the cytotoxic effect. Cell lines derived from solid tumours: A549 (lung carcinoma) and MCF-7 (breast adenocarcinoma) as well as reference BALB/3T3 (normal murine fibroblasts) were less susceptible to compounds tested. Developed derivatives show improved properties than Vorinostat, thus they could be considered as possible agents for leukemia and lymphoma treatment

    Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold

    Get PDF
    Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures
    corecore