17 research outputs found

    Two-Dimensional Intravascular Near-Infrared Fluorescence Molecular Imaging of Inflammation in Atherosclerosis and Stent-Induced Vascular Injury

    Get PDF
    ObjectivesThis study sought to develop a 2-dimensional (2D) intravascular near-infrared fluorescence (NIRF) imaging strategy for investigation of arterial inflammation in coronary-sized vessels.BackgroundMolecular imaging of arterial inflammation could provide new insights into the pathogenesis of acute myocardial infarction stemming from coronary atheromata and implanted stents. Presently, few high-resolution approaches can image inflammation in coronary-sized arteries in vivo.MethodsA new 2.9-F rotational, automated pullback 2D imaging catheter was engineered and optimized for 360° viewing intravascular NIRF imaging. In conjunction with the cysteine protease-activatable imaging reporter Prosense VM110 (VisEn Medical, Woburn, Massachusetts), intra-arterial 2D NIRF imaging was performed in rabbit aortas with atherosclerosis (n =10) or implanted coronary bare-metal stents (n = 10, 3.5-mm diameter, day 7 post-implantation). Intravascular ultrasound provided coregistered anatomical images of arteries. After sacrifice, specimens underwent ex vivo NIRF imaging, fluorescence microscopy, and histological and immunohistochemical analyses.ResultsImaging of coronary artery–scaled phantoms demonstrated 8-sector angular resolution and submillimeter axial resolution, nanomolar sensitivity to NIR fluorochromes, and modest NIRF light attenuation through blood. High-resolution NIRF images of vessel wall inflammation with signal-to-noise ratios >10 were obtained in real-time through blood, without flushing or occlusion. In atherosclerosis, 2D NIRF, intravascular ultrasound–NIRF fusion, microscopy, and immunoblotting studies provided insight into the spatial distribution of plaque protease activity. In stent-implanted vessels, real-time imaging illuminated an edge-based pattern of stent-induced arterial inflammation.ConclusionsA new 2D intravascular NIRF imaging strategy provides high-resolution in vivo spatial mapping of arterial inflammation in coronary-sized arteries and reveals increased inflammation-regulated cysteine protease activity in atheromata and stent-induced arterial injury

    Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

    Get PDF
    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT–NIRF systems acquire data at a very high frame-rate (>100 frames/s), a high number of images per pullback need to be analyzed, making manual processing of OCT–NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT–NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from six New Zealand White rabbit atherosclerotic after indocyanine-green injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 µm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from eight different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT–NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall.National Institutes of Health (U.S.) (NIH R01HL093717)Merck & Co., Inc

    Modulating cardiac hemodynamics using tunable soft robotic sleeves in a porcine model of HFpEF physiology for device testing applications

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is a major challenge in cardiovascular medicine, accounting for ≈50% of all cases of heart failure. Despite the ongoing efforts, no medical device has yet received FDA approval. This is largely due to the lack of an in vivo model of the HFpEF hemodynamics, resulting in the inability to evaluate device effectiveness in vivo prior to clinical trials. Here, the development of a highly tunable porcine model of HFpEF hemodynamics is described using implantable soft robotic sleeves, where controlled actuation of a left ventricular and an aortic sleeve can recapitulate changes in ventricular compliance and afterload associated with a broad spectrum of HFpEF hemodynamic phenotypes. The feasibility of the proposed model in preclinical testing is demonstrated by evaluating the hemodynamic response of the model post-implantation of an interatrial shunt device, which is found to be consistent with findings from in silico studies and clinical trials. This work overcomes limitations of prior HFpEF models, such as low hemodynamic accuracy, high costs, and long development phases. The versatile and adjustable platform introduced can transform HFpEF device development, aiming to enhance the lives of the 32 million people affected globally.</p

    Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo

    Get PDF
    WOS: 000396508600010PubMed ID: 26685129Aims Fibrin deposition and absent endothelium characterize unhealed stents that are at heightened risk of stent thrombosis. Optical coherence tomography (OCT) is increasingly used for assessing stent tissue coverage as a measure of healed stents, but cannot precisely identify whether overlying tissue represents physiological neointima. Here we assessed and compared fibrin deposition and persistence on bare metal stent (BMS) and drug-eluting stent (DES) using near-infrared fluorescence (NIRF) molecular imaging in vivo, in combination with simultaneous OCT stent coverage. Methods and results Rabbits underwent implantation of one BMS and one DES without overlap in the infrarenal aorta (N = 20 3.5 x 12 mm). At Days 7 and/or 28, intravascular NIRF-OCT was performed following the injection of fibrin-targeted NIRF molecular imaging agent FTP11-CyAm7. Intravascular NIRF-OCT enabled high-resolution imaging of fibrin overlying stent struts in vivo, as validated by histopathology. Compared with BMS, DES showed greater fibrin deposition and fibrin persistence at Days 7 and 28 (P < 0.01 vs. BMS). Notably, for edge stent struts identified as covered by OCT on Day 7, 92.8 +/- 9.5% of DES and 55.8 +/- 23.6% of BMS struts were NIRF fibrin positive (P < 0.001). At Day 28, 18.6 +/- 10.6% (DES) and 5.1 +/- 8.7% (BMS) of OCT-covered struts remained fibrin positive (P < 0.001). Conclusion Intravascular NIRF fibrin molecular imaging improves the detection of unhealed stents, using clinically translatable technology that complements OCT. A sizeable percentage of struts deemed covered by OCT are actually covered by fibrin, particularly in DES, and therefore such stents might remain prothrombotic. These findings have implications for the specificity of standalone clinical OCT assessments of stent healing.NIH [R01HL108229, R01HL122388, R01GM49039, R01HL093717]; American Heart Association [13POST14640021, 13GRNT17060040]; MGH ECOR Support Fund; Kanae Foundation for Research AbroadNIH R01HL108229 and R01HL122388 (F.A.J), American Heart Association (#13POST14640021 to T.H.; #13GRNT17060040 to F.A.J.), MGH ECOR Support Fund (F.A.J.), and the Kanae Foundation for Research Abroad (T.H.). E.R.E. was supported in part by NIH R01GM49039. NIH R01HL093717 (G.J.T., for development of the imaging devices); CIMIT (F.A.J. and G.J.T., for development of the imaging devices)

    Soft robotics-enabled large animal model of HFpEF hemodynamics for device testing

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is a major challenge in cardiovascular medicine, accounting for approximately 50% of all cases of heart failure. Due to the lack of effective therapies for this condition, the mortality associated with HFpEF remains higher than that of most cancers. Despite the ongoing efforts, no medical device has yet received FDA approval. This is largely due to the lack of an in vivo model of the HFpEF hemodynamics, resulting in the inability to evaluate device effectiveness in vivo prior to clinical trials. Here, we describe the development of a highly tunable porcine model of HFpEF hemodynamics using implantable soft robotic sleeves, where controlled actuation of a left ventricular and an aortic sleeve can recapitulate changes in ventricular compliance and afterload associated with a broad spectrum of HFpEF hemodynamic phenotypes. We demonstrate the feasibility of the proposed model in preclinical testing by evaluating the hemodynamic response of the model post-implantation of an interatrial shunt device, which was found to be consistent with findings from in silico studies and clinical trials. This work addresses several of the limitations associated with previous models of HFpEF, such as their limited hemodynamic fidelity, elevated costs, lengthy development time, and low throughput. By showcasing exceptional versatility and tunability, the proposed platform has the potential to revolutionize the current approach for HFpEF device development and selection, with the goal of improving the quality of life for the 32 million people affected by HFpEF worldwide.</p

    Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo

    No full text
    Aims: Fibrin deposition and absent endothelium characterize unhealed stents that are at heightened risk of stent thrombosis. Optical coherence tomography (OCT) is increasingly used for assessing stent tissue coverage as a measure of healed stents, but cannot precisely identify whether overlying tissue represents physiological neointima. Here we assessed and compared fibrin deposition and persistence on bare metal stent (BMS) and drug-eluting stent (DES) using near-infrared fluorescence (NIRF) molecular imaging in vivo, in combination with simultaneous OCT stent coverage. Methods and results: Rabbits underwent implantation of one BMS and one DES without overlap in the infrarenal aorta (N = 20 3.5 × 12 mm). At Days 7 and/or 28, intravascular NIRF-OCT was performed following the injection of fibrin-targeted NIRF molecular imaging agent FTP11-CyAm7. Intravascular NIRF-OCT enabled high-resolution imaging of fibrin overlying stent struts in vivo, as validated by histopathology. Compared with BMS, DES showed greater fibrin deposition and fibrin persistence at Days 7 and 28 (P < 0.01 vs. BMS). Notably, for edge stent struts identified as covered by OCT on Day 7, 92.8 ± 9.5% of DES and 55.8 ± 23.6% of BMS struts were NIRF fibrin positive (P < 0.001). At Day 28, 18.6 ± 10.6% (DES) and 5.1 ± 8.7% (BMS) of OCT-covered struts remained fibrin positive (P < 0.001). Conclusion: Intravascular NIRF fibrin molecular imaging improves the detection of unhealed stents, using clinically translatable technology that complements OCT. A sizeable percentage of struts deemed covered by OCT are actually covered by fibrin, particularly in DES, and therefore such stents might remain prothrombotic. These findings have implications for the specificity of standalone clinical OCT assessments of stent healing.National Institutes of Health (U.S.) (NIH grant R01HL108229)National Institutes of Health (U.S.) (NIH grant R01HL122388)American Heart Association (#13POST14640021)American Heart Association (#13GRNT17060040)Massachusetts General Hospital (MGH ECOR Support Fund)National Institutes of Health (U.S.) (NIH R01GM49039)National Institutes of Health (U.S.) (NIH R01HL093717)Kanae Foundation for Research Abroa
    corecore