125 research outputs found

    Kisspeptin receptor (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The kisspeptin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the kisspeptin receptor [9]), like neuropeptide FF (NPFF), prolactin-releasing peptide (PrP) and QRFP receptors (provisional nomenclature) responds to endogenous peptides with an arginine-phenylalanine-amide (RFamide) motif. kisspeptin-54 (KP54, originally named metastin), kisspeptin-13 (KP13) and kisspeptin-10 (KP10) are biologically-active peptides cleaved from the KISS1 (Q15726) gene product. Kisspeptins have roles in, for example, cancer metastasis, fertility/puberty regulation and glucose homeostasis

    Kisspeptin receptor in GtoPdb v.2023.1

    Get PDF
    The kisspeptin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the kisspeptin receptor [11]), like neuropeptide FF (NPFF), prolactin-releasing peptide (PrP) and QRFP receptors (provisional nomenclature) responds to endogenous peptides with an arginine-phenylalanine-amide (RFamide) motif. kisspeptin-54 (KP54, originally named metastin), kisspeptin-13 (KP13) and kisspeptin-10 (KP10) are biologically-active peptides cleaved from the KISS1 (Q15726) gene product. Kisspeptins have roles in, for example, cancer metastasis, fertility/puberty regulation and glucose homeostasis

    Prokineticin receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prokineticin receptors, PKR1 and PKR2 (provisional nomenclature as recommended by NC-IUPHAR [23]) respond to the cysteine-rich 81-86 amino-acid peptides prokineticin-1 (also known as endocrine gland-derived vascular endothelial growth factor, mambakine) and prokineticin-2 (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 (MIT1, [65]) is a potent, non-selective agonist at prokineticin receptors [41], while Bv8, an orthologue of PROK2 from amphibians (Bombina sp., [44]), is equipotent at recombinant PKR1 and PKR2 [48], and has high potency in macrophage chemotaxis assays, which are lost in PKR1-null mice

    Gonadotrophin-releasing hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    GnRH1 and GnRH2 receptors (provisonal nomenclature [35], also called Type I and Type II GnRH receptor, respectively [78]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [78, 77, 107]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [78, 77, 107] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [78, 77, 107]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [53]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [53]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [81]. Phylogenetic classifications divide GnRH receptors into three [78] or five groups [122] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene

    Prokineticin receptors in GtoPdb v.2023.1

    Get PDF
    Prokineticin receptors, PKR1 and PKR2 (provisional nomenclature as recommended by NC-IUPHAR [26]) respond to the cysteine-rich 81-86 amino-acid peptides prokineticin-1 (also known as endocrine gland-derived vascular endothelial growth factor, mambakine) and prokineticin-2 (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 (MIT1, [71]) is a potent, non-selective agonist at prokineticin receptors [46], while Bv8, an orthologue of PROK2 from amphibians (Bombina sp., [49]), is equipotent at recombinant PKR1 and PKR2 [53], and has high potency in macrophage chemotaxis assays, which are lost in PKR1-null mice

    Gonadotrophin-releasing hormone receptors in GtoPdb v.2021.3

    Get PDF
    GnRH1 and GnRH2 receptors (provisonal nomenclature [39], also called Type I and Type II GnRH receptor, respectively [85]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [85, 84, 114]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [85, 84, 114] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [85, 84, 114]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [58]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [58]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [88]. Phylogenetic classifications divide GnRH receptors into three [85] or five groups [129] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene. The structure of the GnRH1 receptor in complex with elagolix has been elucidated [132]

    Glycoprotein hormone receptors in GtoPdb v.2023.1

    Get PDF
    Glycoprotein hormone receptors (provisional nomenclature [47]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [122, 31]

    Glycoprotein hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Glycoprotein hormone receptors (provisional nomenclature [45]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [120]

    Glycoprotein hormone receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Glycoprotein hormone receptors (provisional nomenclature [45]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [120]
    corecore