101 research outputs found
Optical and structural properties of d0 ion-doped silicate glasses for photovoltaic applications
Optical and structural properties of float-type soda lime silicate (SLS) glasses doped with 0.2 mol % TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, MoO3 or WO3 have been studied. Under UV excitation all d0 doped glasses exhibit broadband visible emission centred between 19,000 cm-1 and 25,000 cm-1 (400nm â 525nm) due to a transition from the 2p orbital of O2- to the metal d0 orbital. Dopant additions lead to shifts in the UV absorption edge to lower energies, with doped glasses having an absorption edge 2,000 cm-1 (~20nm), and in the case of MoO3, 4,000 cm-1 (~40nm), lower than the corresponding undoped glass. Combined UV-Vis absorption and X-band EPR spectroscopy analyses confirm that dopant cations occur in the studied glasses in the expected oxidation states of Ti4+, Zr4+, Hf4+, Nb5+, Ta5+, Mo6+ and W6+, although very low levels of Mo5+ are also observed, as demonstrated by the EPR resonance at g=1.92 (3.7T). The incorporation of the studied dopants into SLS glasses may find applications as cover glasses in photovoltaic (PV) applications, providing UV protection of polymers and solar cell materials in PV units whilst enhancing solar cell efficiency through downconversion / fluorescence of absorbed UV photons with re-emission as visible photons, available for absorption and conversion by the solar cell material
Resolution of Li deposition vs. intercalation of graphite anodes in lithium ion batteries - an in situ electron paramagnetic resonance study
In situ electrochemical electron paramagnetic resonance (EPR) spectroscopy is used to understand the mixed lithiation/deposition behavior on graphite anodes during the charging process. The conductivity, degree of lithiation, and the deposition process of the graphite are reflected by the EPR spectroscopic quality factor, the spin density, and the EPR spectral change, respectively. Classical overâcharging (normally associated with potentials â€0â
V vs. Li(+)/Li) are not required for Li metal deposition onto the graphite anode: Li deposition initiates at ca. +0.04â
V (vs. Li(+)/Li) when the scan rate is lowered to 0.04â
mVâs(â1). The inhibition of Li deposition by vinylene carbonate (VC) additive is highlighted by the EPR results during cycling, attributed to a more mechanically flexible and polymeric SEI layer with higher ionic conductivity. A safe cutâoff potential limit of +0.05â
V for the anode is suggested for high rate cycling, confirmed by the EPR response over prolonged cycling
Recommended from our members
Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts
Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for PâP and PâE (Eâ=âO, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25â°C andâ<â5âmin). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing PâO, PâS, or PâN bonds
Synthesis, structure, and cytotoxicity studies of oxidovanadium(IV and V) complexes bearing chelating phenolates
The interaction of [VO(acac)2] with 2,6-bis(hydroxymethyl)-4-methylphenol (L1H3) or 6,6/-methylenebis(4-tert-butyl-2-(hydroxymethyl)phenol) (L2H4) in refluxing toluene afforded, following work-up in ethanol, the complexes [VOL1]2 (1) and {[VO(acac)(HOEt)](VO)L2]}2 (2), respectively. Use of 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (L3H2) or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzosulfonic acid (L4H2) with [VOCl3] in refluxing acetonitrile, followed by methanol and THF work-up, afforded the complexes [Et3NH][VO(OMe)L3]2 (3) and [Et3NH][VO(OMe)L4]2 (4), respectively. The interaction of [VOSO4] and L3H2 in refluxing acetonitrile afforded, with extraction into methanol, the complex [VO(OMe)L3]2 (5). The molecular structures of 2, 3 and 5 have been determined; the structure of 1 has been reported previously. The complexes in this study have been determined to be of low toxicity using in vitro cell assays with 50% cytotoxicity values (CC50) values in the range 56 â 126 ”M
Copper(II)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study
This diagnostic study aims to shed light on the catalytic activity of a library of Cu(II) based coordination compounds with benzotriazole-based ligands. We report herein the synthesis and characterization of five new coordination compounds formulated [CuII(L4)(MeCN)2(CF3SO3)2] (1), [CuII(L5)2(CF3SO3)2] (2), [CuII(L6)2(MeCN)(CF3SO3)]·(CF3SO3) (3), [CuII(L6)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (4), [CuI4(L1)2(L1â)2(CF3SO3)2]2·4(CF3SO3)·8(Me2CO) (5), derived from similar nitrogen-based ligands. The homogeneous catalytic activity of these compounds along with our previously reported coordination compounds (6 -13), derived from similar ligands, is tested against the well-known Cu(I)-catalysed azide-alkyne cycloaddition reaction. The optimal catalyst [CuII(L1)2(CF3SO3)2] (10) activates the reaction to afford 1,4-disubstituted 1,2,3-triazoles with yields up to 98% and without requiring a reducing agent. Various control experiments are performed to optimize the method as well as examine parameters such as ligand variation, metal coordination geometry and environment, in order to elucidate the behaviour of the catalytic system
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
From Springer Nature via Jisc Publications RouterHistory: received 2020-06-08, registration 2020-07-25, accepted 2020-07-25, pub-electronic 2020-08-19, online 2020-08-19, pub-print 2020-09Publication status: PublishedFunder: The Royal Society (London); Grant(s): IE160035Funder: Natural Sciences and Engineering Council of Canada; Grant(s): Discovery GrantFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): NS/A000055/1Abstract: Stabilised amorphous selenium (a-Se) is currently used in the majority of direct conversion mammographic X-ray imaging detectors due to its X-ray photoconductivity and its ability to be uniformly deposited over large area TFT substrates by conventional vacuum deposition. We report experimental results on photocurrent spectroscopy (frequency-resolved spectroscopy (FRS) and single-time transients), on vacuum-deposited a-Se films. We show that all measured photocurrents depend critically on the relative time spent by the material in the light and in the dark. We identify that the observed pronounced variation in optical response depends on the density of trapped (optically injected) charge within 200 nm of the surface and show that it is the ratio of dark and light exposure time that controls the density of such charge. Our data confirm that the localised charge radically influences the photocurrent transient shape due to the effective screening of the applied field within 200 nm of the surface. The field modification occurs over the optical extinction depth and changes both the photogeneration process and the drift of carriers. Many aspects of our data carry the signature of known properties of valence alternation pair (VAP) defects, which control many properties of a-Se. Modelling in the time domain shows that light generation of VAPs followed by optically triggered VAP defect conversion can lead to near-surface charge imbalance, demonstrating that VAP defects can account for the unusual optical response. The stabilised a-Se films were deposited above the glass transition temperature of the alloy with composition a-Se:0.3% As doped with ppm Cl. Electron paramagnetic resonance measurements at temperatures down to 5 K did not detect any spin active defects, even under photoexcitation above band gap
Recommended from our members
Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts
Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for PâP and PâE (Eâ=âO, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25â°C andâ<â5âmin). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing PâO, PâS, or PâN bonds
High optode-density wearable diffuse optical probe for monitoring paced breathing hemodynamics in breast tissue
Significance: Diffuse optical imaging (DOI) provides in vivo quantification of tissue chromophores such as oxy- and deoxyhemoglobin ([Formula: see text] and HHb, respectively). These parameters have been shown to be useful for predicting neoadjuvant treatment response in breast cancer patients. However, most DOI devices designed for the breast are nonportable, making frequent longitudinal monitoring during treatment a challenge. Furthermore, hemodynamics related to the respiratory cycle are currently unexplored in the breast and may have prognostic value. Aim: To design, fabricate, and validate a high optode-density wearable continuous wave diffuse optical probe for the monitoring of breathing hemodynamics in breast tissue. Approach: The probe has a rigid-flex design with 16 dual-wavelength sources and 16 detectors. Performance was characterized on tissue-simulating phantoms, and validation was performed through flow phantom and cuff occlusion measurements. The breasts of [Formula: see text] healthy volunteers were measured while performing a breathing protocol. Results: The probe has 512 unique sourceâdetector (S-D) pairs that span S-D separations of 10 to 54Â mm. It exhibited good performance characteristics: [Formula: see text] drift of 0.34%/h, [Formula: see text] precision of 0.063%, and mean [Formula: see text] up to 41Â mm S-D separation. Absorption contrast was detected in flow phantoms at depths exceeding 28Â mm. A cuff occlusion measurement confirmed the ability of the probe to track expected hemodynamics in vivo. Breast measurements on healthy volunteers during paced breathing revealed median signal-to-motion artifact ratios ranging from 8.1 to 8.7Â dB. Median [Formula: see text] and [Formula: see text] amplitudes ranged from 0.39 to [Formula: see text] and 0.08 to [Formula: see text] , respectively. Median oxygen saturations at the respiratory rate ranged from 82% to 87%. Conclusions: A wearable diffuse optical probe has been designed and fabricated for the measurement of breast tissue hemodynamics. This device is capable of quantifying breathing-related hemodynamics in healthy breast tissue
A bis-calix[4]arene-supported [Cu<sup>II</sup><sub>16</sub>] cage
Reaction of 2,2'-bis-p-tBu-calix[4]arene (H8L) with Cu(NO3)2·3H2O and N-methyldiethanolamine (Me-deaH2) in a basic dmf/MeOH mixture affords [CuII16(L)2(Me-dea)4(Ό4-NO3)2(Ό-OH)4(dmf)3.5(MeOH)0.5(H2O)2](H6L)·16dmf·4H2O (4), following slow evaporation of the mother liquor. The central core of the metallic skeleton describes a tetracapped square prism, [Cu12], in which the four capping metal ions are the CuII ions housed in the calix[4]arene polyphenolic pockets. The [CuII8] square prism is held together "internally" by a combination of hydroxide and nitrate anions, with the N-methyldiethanolamine co-ligands forming dimeric [CuII2] units which edge-cap above and below the upper and lower square faces of the prism. Charge balance is maintained through the presence of one doubly deprotonated H6L2- ligand per [Cu16] cluster. Magnetic susceptibility measurements reveal the predominance of strong antiferromagnetic exchange interactions and an S = 1 ground state, while EPR is consistent with a large zero-field splitting
Resolution of Lithium Deposition versus Intercalation of Graphite Anodes in Lithium Ion Batteries: An In Situ Electron Paramagnetic Resonance Study
From Wiley via Jisc Publications RouterHistory: received 2021-05-07, rev-recd 2021-07-02, pub-electronic 2021-08-13Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/R023034/1, NS/A000055/1, FIRG001 (EP/S003053/1)Abstract: In situ electrochemical electron paramagnetic resonance (EPR) spectroscopy is used to understand the mixed lithiation/deposition behavior on graphite anodes during the charging process. The conductivity, degree of lithiation, and the deposition process of the graphite are reflected by the EPR spectroscopic quality factor, the spin density, and the EPR spectral change, respectively. Classical overâcharging (normally associated with potentials â€0 V vs. Li+/Li) are not required for Li metal deposition onto the graphite anode: Li deposition initiates at ca. +0.04 V (vs. Li+/Li) when the scan rate is lowered to 0.04 mV sâ1. The inhibition of Li deposition by vinylene carbonate (VC) additive is highlighted by the EPR results during cycling, attributed to a more mechanically flexible and polymeric SEI layer with higher ionic conductivity. A safe cutâoff potential limit of +0.05 V for the anode is suggested for high rate cycling, confirmed by the EPR response over prolonged cycling
- âŠ