3 research outputs found

    A Novel Measurement Approach to Experimentally Determine the Thermomechanical Properties of a Gas Foil Bearing Using a Specialized Sensing Foil Made of Inconel Alloy

    No full text
    Modern approaches dedicated to controlling the operation of gas foil bearings require advanced measurement techniques to comprehensively investigate the bearings’ thermal and thermomechanical properties. Their successful long-term maintenance with constant operational characteristics may be feasible only when the allowed thermal and mechanical regimes are rigorously kept. Hence, an adequate acquisition of experimental readings for the critical physical quantities should be conducted to track the actual condition of the bearing. The above-stated demand has motivated the authors of this present work to perform the thermomechanical characterization of the prototype installation of a gas foil bearing, applying a specialized sensing foil. This so-called top foil is a component of the structural part of the bearing’s supporting layer and composed of a superalloy, Inconel 625. The strain and temperature distributions were identified based on the readings from the strain gauges and integrated thermocouples mounted on the top foil. The measurements’ results were obtained for the experiments that represent the arbitrarily selected operational conditions of the tested bearing. Specifically, the considered measurement scenario relates to the operation at a nominal rotational speed, i.e., during the stable process, as well as to the run-up and run-out stages. The main objectives of the work are: (a) experimental proof for the described functionalities of the designed and manufactured specialized sensing foil that allow for the application of a novel approach to the bearing’s characterization, and (b) qualitative investigation of the relation between the mechanical and thermal properties of the tested bearing, using the measurements conducted with the newly proposed technical solution

    Why is the winner the best?

    No full text
    International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work
    corecore