15 research outputs found

    Hippocampal Functional Dynamics Are Clinically Implicated in Autoimmune Encephalitis With Faciobrachial Dystonic Seizures

    Get PDF
    This is the first study to investigate functional brain activity in patients affected by autoimmune encephalitis with faciobrancial dystonic seizures (FBDS). Multimodal 3T MRI scans, including structural neuroimaging (T1-weighted, diffusion weighted) and functional neuroimaging (scene-encoding task known to activate hippocampal regions), were performed. This case series analysis included eight patients treated for autoimmune encephalitis with FBDS, scanned during the convalescent phase of their condition (median 1.1 years post-onset), and eight healthy volunteers. Compared to controls, 50% of patients showed abnormal hippocampal activity during scene-encoding relative to familiar scene-viewing. Higher peak FBDS frequency was significantly related to lower hippocampal activity during scene-encoding (p = 0.02), though not to markers of hippocampal microstructure (mean diffusivity, p = 0.3) or atrophy (normalized volume, p = 0.4). During scene-encoding, stronger within-medial temporal lobe (MTL) functional connectivity correlated with poorer Addenbrooke's Cognitive Examination-Revised memory score (p = 0.03). These findings suggest that in autoimmune encephalitis, frequent seizures may have a long-term impact on hippocampal activity, beyond that of structural damage. These observations also suggest a potential approach to determine on-going MTL performance in this condition to guide long-term management and future clinical trials

    Regulatory T cell profiles in patients with N-methyl-á´…-aspartate receptor-antibody encephalitis

    Get PDF
    Purpose Purpose Regulatory T cells (Tregs) have been implicated in the pathogenesis of several autoimmune disorders and used in adoptive cell transfer therapies. Neither have been explored in patients with autoimmune encephalitis where treated patient outcomes remain suboptimal with frequent relapses. Here, to identify new treatment strategies for autoimmune encephalitis, we sought to evaluate the proportion of circulating Tregs and Treg subpopulations in peripheral blood of patients with N-methyl-ᴅ-aspartate receptor-antibody encephalitis (NMDAR-Ab-E) and compared this with healthy controls. Methods We compared the phenotype of peripheral blood Tregs in four adult NMDAR-Ab-E patients and four age- and sex-matched healthy controls using an 11-color flow cytometry assay panel for characterization of Tregs (CD4+ CD25+ FoxP3+) cells into naïve (chemokine receptor [CCR] 7+ CD45RA+), central memory (CCR7+ CD45RA–), and effector memory (CCR7– CD45RA–) cells. We also examined and compared the expression of the CCR6 by circulating Tregs and the respective Treg subpopulations between the study groups. Results The proportion of circulating Tregs was similar between patients with NMDAR-Ab-E and healthy controls but the proportion of naïve Tregs was lower in NMDAR-Ab-E patients (p = 0.0026). Additionally, the frequency of circulating effector memory Tregs was higher, and the proportion of circulating effector memory Tregs expressing CCR6 was lower, in NMDAR-Ab-E patients compared with healthy controls (p = 0.0026). Conclusion Altered Treg homeostasis may be a feature of patients with NMDAR-Ab-E. Future studies with larger samples are warranted to validate these findings

    Synaptic and neuronal autoantibody-associated psychiatric syndromes:Controversies and hypotheses

    Get PDF
    Autoimmune encephalitis (AE) mediated by antibodies against synaptic and neuronal surface targets frequently presents with a psychiatric syndrome. In these patients, removal of autoantibodies treats the disease and outcomes are closely linked to early intervention. The discovery of these autoantibodies in isolated psychiatric syndromes has raised the possibility that these patients may derive similar benefits from immunotherapy, a potentially transformational approach to the treatment of mental illness. Although open-label case series suggest impressive therapeutic outcomes, the pathological relevance of these autoantibodies outside of canonical presentations is debated. The advent of diagnostic criteria for AE attempts to facilitate its prompt identification but risks prematurely neglecting the potential scientific and clinical significance of isolated syndromes that do not satisfy these criteria. Here, we propose using a syndrome-level taxonomy that has occasional, but not necessary, overlap with AE: synaptic and neuronal autoantibody-associated psychiatric syndromes or "SNAps". This will prevent confusion with AE and act heuristically to promote active investigation into this rare example of psychopathology defined on a molecular level. We suggest that this concept would have application in other autoantibody-associated syndromes including seizure, cognitive, and movement disorders, in which similar issues arise. We review putative direct and indirect mechanisms and outline experimentally testable hypotheses that would help to determine prospectively in whom autoantibody detection is relevant, and as important, in whom it is not. We summarize a pragmatic approach to autoantibody testing and management in severe mental illness in order to promptly diagnose AE and advocate a research-orientated experimental medicine paradigm for SNAps, where there is greater equipoise. We conclude that SNAps remains a nascent area of clinical neuroscience with great potential and in ongoing need of psychiatry-led basic and clinical research

    Psychosis: an autoimmune disease?

    No full text
    Psychotic disorders are common and disabling. Overlaps in clinical course in addition to epidemiological and genetic associations raise the possibility that autoimmune mechanisms may underlie some psychoses, potentially offering novel therapeutic approaches. Several immune loci including the major histocompatibility complex and B-cell markers CD19 and CD20 achieve genome-wide significance in schizophrenia. Emerging evidence suggests a potential role via neurodevelopment in addition to classical immune pathways. Additionally, lymphocyte biology is increasingly investigated. Some reports note raised peripheral CD19+ and reduced CD3+ lymphocyte counts, with altered CD4 : CD8 ratios in acute psychosis. Also, post-mortem studies have found CD3+ and CD20+ lymphocyte infiltration in brain regions that are of functional relevance to psychosis. More specifically, the recent paradigm of neuronal surface antibody-mediated (NSAb) central nervous system disease provides an antigen-specific model linking adaptive autoimmunity to psychopathology. NSAbs bind extracellular epitopes of signalling molecules that are classically implicated in psychosis such as NMDA and GABA receptors. This interaction may cause circuit dysfunction leading to psychosis among other neurological features in patients with autoimmune encephalitis. The detection of these cases is crucial as autoimmune encephalitis is ameliorated by commonly available immunotherapies. Meanwhile, the prevalence and relevance of these antibodies in people with isolated psychotic disorders is an area of emerging scientific and clinical interest. Collaborative efforts to achieve larger sample sizes, comparison of assay platforms, and placebo-controlled randomized clinical trials are now needed to establish an autoimmune contribution to psychosis

    The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence

    No full text
    : Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise high risk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, large- scale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders

    In Vivo N-Methyl-d-Aspartate Receptor (NMDAR) Density as Assessed Using Positron Emission Tomography During Recovery From NMDAR-Antibody Encephalitis.

    Get PDF
    This case-control study uses a radiotracer and positron emission tomography to assess N-methyl-d-aspartate receptor (NMDAR) density changes during recovery from NMDAR-antibody encephalitis.</jats:p
    corecore