169 research outputs found
UPACARA ADAT YADNYA KASADA KECAMATAN TOSARI KABUPATEN PASURUAN TAHUN 2000-2019 : STUDI TENTANG DINAMIKA KEBUDAYAAN ROHANI DI ERA MODERN
The geographic location Tosari District which is in mountanious area, has land cotours that suitable for plantation, potential for tourism, and cultural objects. The Tengger tribe is a local resident who lives on slopes of mount Bromo, Tengger, Semeru. The culture and traditions of the Tengger tribe are still firmly adhered to and implement today. One culture that still exist amid the dynamics of today’s progress is Yadnya Kasada traditional ceremony. This ceremony is believed as an offering to the god of the Tengger tribe, the majority of whom are Hindus for the gifts and sustenance tha have been given. Tengger people are known for their high devotion to their god. Regardless of the progress of the times, this ceremony can survive as a traditional Tengger spiritual culture that still exist in the modern era. Based on this background, the formulation of the problems are 1) What is the implementation mechanism of the Yadnya Kasada traditional ceremony in Tosari District Pasuruan Regency 2000-2019?2) How can the Yadnya Kasada traditional ceremony continue to exist in the modern era , as well as the response of the Tengger tribe?. The research method used reconstruct the traditional culture of the Yadnya Kasada ceremony is historical research mothed including heuristics, criticism, intepretation and historiography. Based on the analysis of the facts and sources that have been obtained, the result show that the Yadnya Kasada traditional ceremony is a representation of the original legend of the Tengger tribe, namely Rara Anteng adn Joko Seger who have descendansts of the Majapahit Kingdom. This tradition is dedicated to their last child, Raden Kusuma. Who according to believe of the Tengger tribe, protects the nature in the Bromo environment and it surroundings. Kasada shows that life in the world can be save and secure if a good relationship is maintened between humans and god. Therefore, it is necessary to preverse local tradition amidts the advancement of time and technology in this 2000 era. Keywords: Traditional ceremony, the dynamics spritual culture, yadnya kasad
Nuclear targeting of Bax during apoptosis in human colorectal cancer cells
Homeostasis in colonic epithelial cells is regulated by the balance between proliferative activity and cell loss by apoptosis. Because epithelial cells at the apex of colonic crypts undergo apoptosis and proliferative activity is usually restricted to the base of the crypts, it has been proposed that the limited availability of growth factor-signals at the upper portions of the crypts may trigger apoptosis. In the present studies, we investigate the mechanism of apoptosis mediated by growth factor deprivation in colorectal carcinoma cells by delineating the possible involvement of Bax and its subcellular localization. We report that inhibition of Epidermal Growth Factor Receptor (EGFR) tyrosine kinase activity and downregulation of EGFR by anti-EGFR mAb 225 induces apoptosis in human colorectal carcinoma DiFi and FET cells. Induction of apoptosis was preceded by enhanced expression of newly synthesized Bax protein, and required protein synthesis. In the mAb 225-treated cells, Bax was redistributed from the cytosol to the nucleus and subsequently, to the nuclear membranes. The observed induction of Bax expression by mAb 225 was not associated with p53 induction. However, mAb 225 treatment also triggered relocalization of p53 from the cytosol to a nuclear membrane-bound form. Induction of Bax and its redistribution to the nucleus of DiFi cells during apoptosis was also demonstrated in response to butyrate, a physiological relevant molecule in colonic epithelial cells as it is the principal short-chain fatty acid produced by bacterial fermentation of dietary fiber in colonic epithelium. Using immunofluorescence and confocal microscopy, we observed that Bax is predominantly localized in the cytosol, but during apoptosis it is localized both inside and along the nuclear membrane. Taken together, these findings suggest that apoptosis induced by growth factor-deprivation or butyrate may involve the subcellular redistribution of Bax in human colorectal carcinoma cells
Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells
Binding of extracellular ligands to epidermal growth factor receptors (EGFR) activate signal transduction pathways associated with cell proliferation, and these events are inhibited by monoclonal antibodies against EGFR. Since efficient DNA repair in actively growing cells may require growth factor signaling, it was of interest to explore any linkage between EGFR-mediated signaling and DNA-dependent protein kinase (DNA-PK), an enzyme believed to be involved in repairing double strand breaks and V(D)J recombination. We report that anti-EGFR monoclonal antibodies (mAbs), and not EGFR ligands, trigger a specific early physical interaction between EGFR and a 350-kDa catalytic subunit of DNA or its regulatory heterodimeric complex Ku70/80, in a variety of cell types, both in vivo and in vitro. Inhibition of EGFR signaling by anti-EGFR mAb was accompanied by a reduction in the levels of the DNA-PK and its activity in the nuclear fraction. Confocal imaging revealed that a substantial amount of DNA-PK was co-localized with EGFR in anti-EGFR mAb-treated cells. Anti-EGFR mAb-induced physical interaction between EGFR and DNA-PK or Ku70/80 was dependent on the presence of EGFR, but not on the levels of EGFR. The EGFR associated with DNA-PK or Ku70/80 retains its intrinsic kinase activity. Our findings demonstrate the existence of a novel cellular pathway in mammalian cells that involves physical interactions between EGFR and DNA-PK or Ku70/80 in response to inhibition of EGFR signaling. Our present observations suggest a possible role of EGFR signaling in maintenance of the nuclear levels of DNA-PK, and interference in EGFR signaling may possibly result in the impairment of DNA repair activity in the nuclei in anti-EGFR mAb-treated cells
Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1
Stimulation of growth factor signaling has been implicated in the development of invasive phenotype and p21-activated kinase (PAK1) activation in human breast epithelial cancer cells. To further explore the roles of PAK1 in the invasive behavior of breast cancer cells, in the present study we investigated the influence of inhibition of PAK1 activity on the reorganization of cytoskeleton components that control motility and invasiveness of cells, using a highly invasive breast cancer MDA-MB435 as a model system. Our results demonstrate that overexpression of a kinase dead K299R PAK1 mutant leads to suppression of motile phenotypes as well as invasiveness of cells both in the absence or presence of exogenous heregulin-β1. In addition, these phenotypic changes were accompanied by a blockade of disassembly of focal adhesion points, stabilization of stress fibers, and enhanced cell spreading and were dependent on the presence of the kinase dead domain but independent of the presence of the Rac/cdc42 intact (Cdc42/Rac interactive binding) domain of PAK1. We also demonstrated that in K299R PAK1-expressing cells, F-actin filaments were stabilized by persistent co-localization with the actin-binding proteins tropomyosin and caldesmon. Extension of these studies to invasive breast cancer MDA-MB231 cells illustrated that conditional expression of kinase-defective K299R PAK1 was also accompanied by persistent cell spreading, multiple focal adhesion points, and reduced invasiveness. Furthermore, inhibition of PAK1 activity in breast cancer cells was associated with a reduction in c-Jun N-terminal kinase activity, inhibition of DNA binding activity of transcription factor AP-1, and suppression of in vivo transcription driven by AP-1 promoter (known to be involved in breast cancer invasion). These findings suggest that PAK1 downstream pathways have a role in the development and maintenance of invasive phenotypes in breast cancer cells
Regulation of cyclooxygenase-2 pathway by HER2 receptor
Emerging lines of evidence suggest that in addition to growth factors, the process of colorectal tumorigenesis may also be driven by the upregulation of the inducible form of cyclooxygenase-2 (COX-2), an enzyme responsible for the conversion of arachidonic acid to PGEs. The present study was undertaken to investigate the expression and activation of the HER family members, and to explore the regulation of COX-2 expression by the HER2 pathway in human colorectal cancer cells. Here, we report that human colorectal cancer cell lines express abundant levels of HER2 and HER3 receptors, and are growth-stimulated by recombinant neu-differentiation factor-beta 1 (NDF). NDF-treatment of colorectal cancer cells was accompanied by increased tyrosine phosphorylation and heterodimerization of HER3 with HER2. In addition, we demonstrated that HER2 and HER3 receptors in colorectal cancer cells are constitutively phosphorylated on tyrosine residues and form heterodimeric complexes in the absence of exogenous NDF. Inhibition of HER2/HER3 signaling by an anti-HER3 mAb against the ligand binding site resulted in a decrease in the levels of constitutively activated HER2/HER3 heterodimers, and the unexpected reduction of COX-2 expression. Activation of the HER2/HER3 pathway by NDF induced the activation of COX-2 promoter, expression of COX-2 mRNA, COX-2 protein and accumulation of prostaglandin E2 in the culture medium. Finally, we demonstrated that NDF promotes the ability of colorectal cancer cells to survive in an extracellular matrix milieu, such as Matrigel, and also to invade through a 8 μm porous membrane. These biological activities of NDF and its stimulation of cell proliferation are blocked by a specific inhibitor of COX-2. Taken together, our findings provide the first biochemical evidence of a possible role of the COX-2 pathway in the mitogenic action of NDF in colorectal cancer cells where it may be constitutively upregulated due to the autocrine/paracrine activation of HER2/HER3 heterodimers
Heregulin and HER2 signaling selectively activates c-Src phosphorylation at tyrosine 215
AbstractTo elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215
Mo/Ti Diffusion Bonding for Making Thermoelectric Devices
An all-solid-state diffusion bonding process that exploits the eutectoid reaction between molybdenum and titanium has been developed for use in fabricating thermoelectric devices based on skutterudite compounds. In essence, the process is one of heating a flat piece of pure titanium in contact with a flat piece of pure molybdenum to a temperature of about 700 C while pushing the pieces together with a slight pressure [a few psi (of the order of 10 kPa)]. The process exploits the energy of mixing of these two metals to form a strong bond between them. These two metals were selected partly because the bonds formed between them are free of brittle intermetallic phases and are mechanically and chemically stable at high temperatures. The process is a solution of the problem of bonding hot-side metallic interconnections (denoted hot shoes in thermoelectric jargon) to titanium-terminated skutterudite n and p legs during the course of fabrication of a unicouple, which is the basic unit cell of a thermoelectric device (see figure). The hot-side operating temperature required for a skutterudite thermoelectric device is 700 C. This temperature precludes the use of brazing to attach the hot shoe; because brazing compounds melt at lower temperatures, the hot shoe would become detached during operation. Moreover, the decomposition temperature of one of the skutterudite compounds is 762 C; this places an upper limit on the temperature used in bonding the hot shoe. Molybdenum was selected as the interconnection metal because the eutectoid reaction between it and the titanium at the ends of the p and n legs has characteristics that are well suited for this application. In addition to being suitable for use in the present bonding process, molybdenum has high electrical and thermal conductivity and excellent thermal stability - characteristics that are desired for hot shoes of thermoelectric devices. The process takes advantage of the chemical potential energy of mixing between molybdenum and titanium. These metals have a strong affinity for each other. They are almost completely soluble in each other and remain in the solid state at temperatures above the eutectoid temperature of 695 C. As a result, bonds formed by interdiffusion of molybdenum and titanium are mechanically stable at and well above the original bonding temperature of about 700 C. Inasmuch as the bonds are made at approximately the operating temperature, thermomechanical stresses associated with differences in thermal expansion are minimized
Combining GWAS and Population Genomic Analyses to Characterize Coevolution in a Legume-rhizobia Symbiosis
The mutualism between legumes and rhizobia is clearly the product of past coevolution. However, the nature of ongoing evolution between these partners is less clear. To characterize the nature of recent coevolution between legumes and rhizobia, we used population genomic analysis to characterize selection on functionally annotated symbiosis genes as well as on symbiosis gene candidates identified through a two-species association analysis. For the association analysis, we inoculated each of 202 accessions of the legume host Medicago truncatula with a community of 88 Sinorhizobia (Ensifer) meliloti strains. Multistrain inoculation, which better reflects the ecological reality of rhizobial selection in nature than single-strain inoculation, allows strains to compete for nodulation opportunities and host resources and for hosts to preferentially form nodules and provide resources to some strains. We found extensive host by symbiont, that is, genotype-by-genotype, effects on rhizobial fitness and some annotated rhizobial genes bear signatures of recent positive selection. However, neither genes responsible for this variation nor annotated host symbiosis genes are enriched for signatures of either positive or balancing selection. This result suggests that stabilizing selection dominates selection acting on symbiotic traits and that variation in these traits is under mutation-selection balance. Consistent with the lack of positive selection acting on host genes, we found that among-host variation in growth was similar whether plants were grown with rhizobia or N-fertilizer, suggesting that the symbiosis may not be a major driver of variation in plant growth in multistrain contexts
Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole
Post-fire air constituents that are of interest to NASA include CO and some acid gases (HCl and HCN). CO is an important analyte to be able to sense in human habitats since it is a marker for both prefire detection and post-fire cleanup. The need exists for a sensor that can be incorporated into an existing sensing array architecture. The CO sensor needs to be a low-power chemiresistor that operates at room temperature; the sensor fabrication techniques must be compatible with ceramic substrates. Early work on the JPL ElectronicNose indicated that some of the existing polymer-carbon black sensors might be suitable. In addition, the CO sensor based on polypyrrole functionalized with iron porphyrin was demonstrated to be a promising sensor that could meet the requirements. First, pyrrole was polymerized in a ferric chloride/iron porphyrin solution in methanol. The iron porphyrin is 5, 10, 15, 20-tetraphenyl-21H, 23Hporphine iron (III) chloride. This creates a polypyrrole that is functionalized with the porphyrin. After synthesis, the polymer is dried in an oven. Sensors were made from the functionalized polypyrrole by binding it with a small amount of polyethylene oxide (600 MW). This composite made films that were too resistive to be measured in the device. Subsequently, carbon black was added to the composite to bring the sensing film resistivity within a measurable range. A suspension was created in methanol using the functionalized polypyrrole (90% by weight), polyethylene oxide (600,000 MW, 5% by weight), and carbon black (5% by weight). The sensing films were then deposited, like the polymer-carbon black sensors. After deposition, the substrates were dried in a vacuum oven for four hours at 60 C. These sensors showed good response to CO at concentrations over 100 ppm. While the sensor is based on a functionalized pyrrole, the actual composite is more robust and flexible. A polymer binder was added to help keep the sensor material from delaminating from the electrodes, and carbon was added to improve the conductivity of the material
- …