8 research outputs found
Newcastle Disease Virus V Protein Inhibits Cell Apoptosis and Promotes Viral Replication by Targeting CacyBP/SIP
Newcastle disease virus (NDV) has been classified by the World Organization for Animal Health (OIE) as a notable disease-causing virus, and this virus has the ability to infect a wide range of birds. V protein is a non-structural protein of NDV. V protein has been reported to inhibit cell apoptosis (Park et al., 2003a) and promote viral replication (Huang et al., 2003), however, the mechanisms of action of V protein have not been elucidated. In the present study, a yeast two-hybrid screen was performed, and V protein was found to interact with the CacyBP/SIP protein. The results of co-immunoprecipitation and immuno-colocalization assays confirmed the interaction between V protein and CacyBP/SIP. The results of quantitative-PCR and viral plaque assays showed that overexpression of CacyBP/SIP inhibited viral replication in DF-1 cells. Overexpression of CacyBP/SIP in DF-1 cells induced caspase3-dependent apoptosis. The effect of knocking down CacyBP/SIP by siRNA was the opposite of that observed upon overexpression. Moreover, it is known that NDV induces cell apoptosis via multiple caspase-dependent pathways. Furthermore, V protein inhibited cell apoptosis and downregulated CacyBP/SIP expression in DF-1 cells. Taken together, the findings of the current study indicate that V protein interacts with CacyBP/SIP, thereby regulating cell apoptosis and viral replication
A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice
Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control
Isolation and Identification of Aeromonas veronii in Sheep with Fatal Infection in China: A Case Report
According to the findings of a sheep breeding farm in Shaanxi, China, 2.53% (15/594) of sheep exhibited respiratory (clinical) symptoms such as dyspnoea, nasal discharge, wet cough, fever, and progressive emaciation. Although multi-drug treatment strategies (including ampicillin, tylosin, florfenicol, and ceftiofur) have been attempted to improve clinical outcomes, they have only been met with limited success, with a mortality rate of 40%. Ultimately, Aeromonas veronii (A. veronii) was identified as the causative pathogen for respiratory disease. The rates of symptomatic and asymptomatic sheep positive to A. veronii were 64.28% (95% CI 52.25–76.31%) and 8.02% (95% CI 6.96–9.08%), respectively. Pathogenicity tests demonstrated that the A. veronii is pathogenic to sheep and mice. The results of the antibiotic susceptibility tests revealed that the strain was sensitive to cefotaxime, gentamicin, and enrofloxacin and resistant to ampicillin, ceftiofur, amoxicillin, kanamycin, neomycin, streptomycin, tetracycline, florfenicol, and tylosin. We suggest that the combination of cefotaxime and gentamicin is an effective treatment based on the results of an antimicrobial susceptibility test, which exhibited good therapeutic efficacy. To the best of our knowledge, this is the first report in which pathogenic A. veronii has been documented as the cause of death in sheep in China. We concluded that pathogenic A. veronii poses a potential risk to the industry of sheep husbandry. This study’s findings can help guide prevention and treatment plans for A. veronii infection in sheep
Isolation and Identification of <i>Aeromonas veronii</i> in Sheep with Fatal Infection in China: A Case Report
According to the findings of a sheep breeding farm in Shaanxi, China, 2.53% (15/594) of sheep exhibited respiratory (clinical) symptoms such as dyspnoea, nasal discharge, wet cough, fever, and progressive emaciation. Although multi-drug treatment strategies (including ampicillin, tylosin, florfenicol, and ceftiofur) have been attempted to improve clinical outcomes, they have only been met with limited success, with a mortality rate of 40%. Ultimately, Aeromonas veronii (A. veronii) was identified as the causative pathogen for respiratory disease. The rates of symptomatic and asymptomatic sheep positive to A. veronii were 64.28% (95% CI 52.25–76.31%) and 8.02% (95% CI 6.96–9.08%), respectively. Pathogenicity tests demonstrated that the A. veronii is pathogenic to sheep and mice. The results of the antibiotic susceptibility tests revealed that the strain was sensitive to cefotaxime, gentamicin, and enrofloxacin and resistant to ampicillin, ceftiofur, amoxicillin, kanamycin, neomycin, streptomycin, tetracycline, florfenicol, and tylosin. We suggest that the combination of cefotaxime and gentamicin is an effective treatment based on the results of an antimicrobial susceptibility test, which exhibited good therapeutic efficacy. To the best of our knowledge, this is the first report in which pathogenic A. veronii has been documented as the cause of death in sheep in China. We concluded that pathogenic A. veronii poses a potential risk to the industry of sheep husbandry. This study’s findings can help guide prevention and treatment plans for A. veronii infection in sheep
The 16S rRNA Gene Sequencing of Gut Microbiota in Chickens Infected with Different Virulent Newcastle Disease Virus Strains
Newcastle disease virus (NDV) which is pathogenic to chickens is characterized by dyspnea, diarrhea, nervous disorder and hemorrhages. However, the influence of different virulent NDV strain infection on the host gut microbiota composition is still poorly understood. In this study, twenty 21-day-old specific pathogen free (SFP) chickens were inoculated with either the velogenic Herts33 NDV strain, lentogenic La Sota NDV strain or sterile phosphate buffer solution (PBS). Subsequently, the fecal samples of each group were collected for 16S rRNA sequencing. The results showed that the gut microbiota were mainly dominated by Firmicutes, Bacteroidetes and Proteobacteria in both healthy and NDV infected chickens. NDV infection altered the structure and composition of gut microbiota. As compared to the PBS group, phylum Firmicutes were remarkably reduced, whereas Proteobacteria was significantly increased in the velogenic NDV infected group; the gut community structure had no significant differences between the lentogenic NDV infected group and the PBS group at phylum level. At genus level, Escherichia-Shigella was significantly increased in both the velogenic and lentogenic NDV infected groups, but the lactobacillus was only remarkably decreased in the velogenic NDV infected group. Collectively, different virulent strain NDV infection resulted in a different alteration of the gut microbiota in chickens, including a loss of probiotic bacteria and an expansion of some pathogenic bacteria. These results indicated that NDV strains with different virulence have different impacts on chicken gut microbiota and may provide new insights into the intestinal pathogenesis of NDV
Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting
Induced molting enables laying hens to relax, restore energy and prolong the laying hen cycle, resolving problems such as poor egg quality and minimizing economic losses caused by rising global feeding costs. However, traditional molting methods may disrupt gut microflora and promote potential pathogens infections. This study used a customized additive with a mixture of probiotics and vitamins to induce molting and examine the cecal microbiota post molting. A total of two hundred 377 day-of-ISA Brown laying hens were randomly assigned to four groups: non-molt with basal diet (C), 12-day feeding restriction (FR) in earlier-molting (B), feed again to 27.12% egg production in middle-molting (A) and reach second peak of egg production over 81.36% in post-molting (D). Sequencing 16S rRNA to analyze cecal microbial composition revealed that there is no significant change in bacterial community abundance post-molting. In contrast to group C, the number of potentially harmful bacteria such as E. coli and Enterococcus was not found to increase in groups B, A, or D. This additive keeps cecal microbiota diversity and community richness steady. In cecal contents, hens in group B had lower Lactobacillus, Lachnospiraceae and Prevotellaceae (vsC, A, and D), no significant differences were found between post-molting and the non-molting. Furthermore, cecal microbiota and other chemicals (antibodies, hormones, and enzymes, etc.) strongly affect immunological function and health. Most biochemical indicators are significantly positively correlated with Prevotellaceae, Ruminococcaceae and Subdoligranulum, while negatively with Phascolarctobacterium and Desulfovibrio. In conclusion, the additive of probiotics and vitamins improved the cecal microbiota composition, no increase in the associated pathogenic microbial community due to traditional molting methods, and enhances hepatic lipid metabolism and adaptive immunological function, supporting their application and induced molting technology in the poultry breeding industry
Common microRNA–mRNA Interactions in Different Newcastle Disease Virus-Infected Chicken Embryonic Visceral Tissues
To investigate the roles and explore the altered expression of microRNAs (miRNAs) and mRNAs in chicken embryos in response to Newcastle disease virus (NDV) infection, deep sequencing was performed. Then, a conjoint analysis of small RNA-seq and mRNA-seq was performed to screen interactional miRNA–mRNA pairs during NDV infection. In total, 15 and 17 up- and downregulated miRNAs were identified that potentially targeted 4279 and 6080 mRNAs in NDV-infected chicken embryonic tissues, respectively; in addition, 595 upregulated and 480 downregulated mRNAs were identified. The conjoint analysis of the obtained data identified 1069 miRNA–mRNA pairs. Among these pairs, 130 pairs were related to immune or inflammatory responses. The relationship between gga-miR-203a and its target transglutaminase 2 (TGM2) was confirmed using a dual-luciferase reporter system and a real time quantitative polymerase chain reaction (RT-qPCR) assay. Overall, the discovery of miRNAs, mRNAs, and their potential pairing relationships, which may be involved in the regulation of NDV infection, will facilitate our understanding of the complex regulatory relationship between the host and the virus