32 research outputs found

    Integrating Photonics into Fab Labs

    No full text
    An ambitious project teams up local photonics organizations with creative facilities to promote European photonics innovation.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.ImPhys/Optic

    Review of Near-Field Terahertz Measurement Methods and Their Applications: How to Achieve Sub-Wavelength Resolution at THz Frequencies

    No full text
    In the last decades, many research teams working at Terahertz frequencies focused their efforts on surpassing the diffraction limit. Numerous techniques have been investigated, combining methods existing at optic wavelength with THz system such as Time Domain Spectroscopy. The actual development led on one side to a resolution as high as ?/3000 and one the other side to a video-rate recording. The purpose of this paper is to give an overview of the history of the field, to describe the different approaches, to give examples of existing applications and to draw the perspective for this research area.Imaging Science and TechnologyApplied Science

    Bringing optics to Fab Labs in Europe

    No full text
    The Optics Group of Delft University of Technology plays a major role in teaching optics to bachelor and master students. In addition, the group has a long record of introducing, demonstrating and teaching optics to quite diverse groups of people from outside of the university. We will describe some of these activities and focus on a recently started project funded by the European Commission called Phablabs 4.0, which aims to bring photonics to European Fab labs.ImPhys/Optic

    BSc Optics

    No full text
    This book treats optics at the level of students in the later stage of their bachelor or the beginning of their master. It is assumed that the student is familiar with Maxwell’s equations. Although the book takes account of the fact that optics is part of electromagnetism, special emphasis is put on the usefulness of approximate models of optics, their hierarchy and limits of validity. Approximate models such as geometrical optics and paraxial geometrical optics are treated extensively and applied to image formation by the human eye, the microscope and the telescope.Polarisation states and how to manipulate them are studied using Jones vectors and Jones matrices. In the context of interference, the coherence of light is explained thoroughly. To understand fundamental limits of resolution which cannot be explained by geometrical optics, diffraction theory is applied to imaging. The angular spectrum method and evanescent waves are used to understand the inherent loss of information about subwavelength features during the propagation of light. The book ends with a study of the working principle of the laser.TU Delft OPEN TextbookImPhys/OpticsImPhys/Adam groupImPhys/Stallinga grou

    Limits of realizing irradiance distributions with shift-invariant illumination systems and finite etendue sources

    No full text
    When redistributing the light emitted by a source into a prescribed irradiance distribution, it is not guaranteed that, given the source and optical constraints, the desired irradiance distribution can be achieved.We analyze the problem by assuming an optical black box that is shift-invariant, meaning that a change in source position does not change the shape of the irradiance distribution, only its position. The irradiance distribution we can obtain is then governed by deconvolution. Using positive-definite functions and Bochner s theorem, we provide conditions such that the irradiance distribution can be realized for finite etendue sources.We also analyze the problem using optimization, showing that the result heavily depends on the chosen source distribution.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.ImPhys/Adam groupImPhys/Urbach grou

    BSc Optics

    No full text
    This book treats optics at the level of students in the later stage of their bachelor or the beginning of their master. It is assumed that the student is familiar with Maxwell’s equations. Although the book takes account of the fact that optics is part of electromagnetism, special emphasis is put on the usefulness of approximate models of optics, their hierarchy and limits of validity. Approximate models such as geometrical optics and paraxial geometrical optics are treated extensively and applied to image formation by the human eye, the microscope and the telescope. Polarisation states and how to manipulate them are studied using Jones vectors and Jones matrices. In the context of interference, the coherence of light is explained thoroughly. To understand fundamental limits of resolution which cannot be explained by geometrical optics, diffraction theory is applied to imaging. The angular spectrum method and evanescent waves are used to understand the inherent loss of information about subwavelength features during the propagation of light. The book ends with a study of the working principle of the laser.ImPhys/Optic

    Nonexistence of pure S- and P-polarized surface waves at the interface between a perfect dielectric and a real metal

    No full text
    It is known that, at optical frequencies, a simple interface between a perfect dielectric and a real metal can sustain the propagation of surface plasmon polaritons only for P-polarized electromagnetic waves, being S-polarized surface plasmons are prohibited. In this work, we formally show that, strictly speaking, both polarization states are in fact prohibited and that only P-polarized pseudosurface waves are allowed, which is what is encountered in the applications. The existence of such pseudosurface modes allows one to reconcile theory and experimental evidence, but also sets limits for them to be considered as modes bound to the interface.ImPhys/Imaging PhysicsApplied Science

    Terahertz near-field microspectroscopy

    No full text
    Using near-field, terahertz time-domain spectroscopy (THz-TDS), we investigate how the addition of a dielectric material into a subwavelength-diameter, cylindrical waveguide affects its transmission properties. The THz electric near-field is imaged with deep subwavelength resolution as it emerges from filled and unfilled waveguides. Spectroscopic data measured for waveguides filled with polycrystalline D-tartaric acid, and with polyethylene and silicon powders, illustrate the feasibility of this approach for obtaining spectroscopic information from a tiny sample volume.Imaging Science and TechnologyApplied Science

    Gradient descent-based freeform optics design for illumination using algorithmic differentiable non-sequential ray tracing

    No full text
    Algorithmic differentiable ray tracing is a new paradigm that allows one to solve the forward problem of how light propagates through an optical system while obtaining gradients of the simulation results with respect to parameters specifying the optical system. Specifically, the use of algorithmically differentiable non-sequential ray tracing provides an opportunity in the field of illumination engineering to design complex optical system. We demonstrate its potential by designing freeform lenses that project a prescribed irradiance distribution onto a plane. The challenge consists in finding a suitable surface geometry of the lens so that the light emitted by a light source is redistributed into a desired irradiance distribution. We discuss the crucial steps allowing the non-sequential ray tracer to be differentiable. The obtained gradients are used to optimize the geometry of the freeform, and we investigate the effectiveness of adding a multi-layer perceptron neural network to the optimization that outputs parameters defining the freeform lens. Lenses are designed for various sources such as collimated beams or point sources, and finally, a grid of point sources approximating an extended source. The obtained lens designs are finally validated using the commercial non-sequential ray tracer LightTools.ImPhys/Adam groupNumerical Analysi

    A compressive sensing with photonic crystals enabled spectrometer for trace gas observation

    No full text
    Recently a spectrometer concept has been invented which uses compressive sensing in combination with photonic crystal filters. Here we present an adaption of this concept in push-broom configuration for earth observation. This implementation allows for a compact design, while maintaining a high spatial resolution and high signal-to-noise ratio compared to other traditional implementations. The photonic crystals have a unique transmission profile and act as a spectral filter, which allows for the computational reconstruction of the input spectrum with a limited number of filters. We show, using simulations, that our approach is able to reconstruct input radiance spectra with high accuracy and assess the performance for different number of filter sets. We furthermore show proof-of-principle measurements of the transmission profile of a manufactured photonic crystal. Future research will focus on the effect of noise on the reconstruction algorithm as well as further filter set optimization by combining the filter selection process with trace gas concentration retrieval.ImPhys/Adam grou
    corecore