395 research outputs found

    EFFECT OF GENES AFFECTING TAN COLOUR ON PRODUCTIVITY IN ICELANDIC SHEEP

    Get PDF

    Multiscale Kinetic Monte-Carlo for Simulating Epitaxial Growth

    Full text link
    We present a fast Monte-Carlo algorithm for simulating epitaxial surface growth, based on the continuous-time Monte-Carlo algorithm of Bortz, Kalos and Lebowitz. When simulating realistic growth regimes, much computational time is consumed by the relatively fast dynamics of the adatoms. Continuum and continuum-discrete hybrid methods have been developed to approach this issue; however in many situations, the density of adatoms is too low to efficiently and accurately simulate as a continuum. To solve the problem of fast adatom dynamics, we allow adatoms to take larger steps, effectively reducing the number of transitions required. We achieve nearly a factor of ten speed up, for growth at moderate temperatures and large D/F.Comment: 7 pages, 6 figures; revised text, accepted by PR

    Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gerbich, T. M., McLaughlin, G. A., Cassidy, K., Gerber, S., Adalsteinsson, D., & Gladfelter, A. S. Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity. Journal of Cell Biology, 219(7), (2020): e201910021, doi:10.1083/jcb.201910021.Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.The work was supported by National Institutes of Health grant R01-GM-081506
    • …
    corecore