22 research outputs found

    Multiple transcripts of Ca 2ϩ channel ␣ 1 -subunits and a novel spliced variant of the ␣ 1C -subunit in rat ductus arteriosus

    Get PDF
    3 H]thymidine incorporation, suggesting that L-and T-type Ca 2ϩ channels are involved in smooth muscle cell proliferation in the DA. Third, we found that a novel alternatively spliced variant of the ␣ 1C-isoform was highly expressed in the neointimal cushion of the DA, where proliferating and migrating smooth muscle cells are abundant. The basic channel properties of the spliced variant did not differ from those of the conventional ␣1C-subunit. We conclude that multiple VDCC subunits were identified in the DA, and, in particular, ␣ 1C-and ␣1G-subunits were predominant in the DA. A novel spliced variant of the ␣1C-subunit gene may play a distinct role in neointimal cushion formation in the DA. alternative spliced; development; gene expression; fetal circulation THE DUCTUS ARTERIOSUS (DA) is a fetal arterial connection between the pulmonary artery and the descending aorta. After birth, the DA closes immediately, in accordance with its smooth muscle contraction. An increase in oxygen tension and a dramatic decline in circulating prostaglandins are the most important triggers of DA contraction (5). Generally, vascular smooth muscle contraction is induced by Ca 2ϩ / calmodulin-dependent phosphorylation of the regulatory myosin light chain, which is mediated by an increase in intracellular Ca 2ϩ . Ca 2ϩ influx through voltage-dependent Ca 2ϩ channels (VDCCs) and Ca 2ϩ release from intracellular stores are major sources of this increase (8, 26). Thus VDCCs must play an important role in vascular myogenic reactivity and tone of the DA. VDCCs are classified, according to their distinct electrophysiological and pharmacological properties, into low (Ttype) and high (L-, N-, P-, Q-, and R-type) VDCCs (20, In addition to their role in determining contractile state, a growing body of evidence has demonstrated that VDCCs play an important role in regulating differentiation and remodeling of vascular smooth muscle cells (SMCs) (14, In the present study, we identified multiple VDCC subunits in the DA by semiquantitative and quantitative RT-PCR and immunodetection. In particular, ␣ 1C -and ␣ 1G -subunits were predominant in the DA. Furthermore, we will demonstrate the identification of a novel spliced variant of the ␣ 1C -subunit gene that may play a role in neointimal cushion formation of the DA

    Ser1901 of α1C subunit is required for the PKA-mediated enhancement of L-type Ca2+ channel currents but not for the negative shift of activation

    Get PDF
    AbstractCardiac L-type Ca2+ channel is facilitated by protein kinase A (PKA)-mediated phosphorylation. Here, we investigated the role of Ser1901, a putative phosphorylation site in the carboxy-terminal of rat brain type-II α1C subunit (rbCII), in the PKA-mediated regulation. Forskolin (3 μM) enhanced Ca2+ channel currents (ICa) and shifted the activation curve to negative voltages, which were abolished by protein kinase inhibitor. Replacement of Ser1901 of rbCII by Ala abolished the enhancement of ICa by forskolin but not the shift of the activation curve. These results indicate that Ser1901 is required for the PKA-mediated enhancement of ICa, and that the voltage-dependence of the activation of ICa appears to be modulated via another PKA phosphorylation site

    L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes

    No full text
    In cardiac excitation-contraction coupling, Ca2+-induced Ca2+ release (CICR) from ryanodine receptors (RyRs), triggered by Ca2+ entry through the nearby L-type Ca2+ channel, induces Ca2+-dependent inactivation (CDI) of the Ca2+ channel. Aiming at elucidating the physiological role of CDI produced by CICR (CICR-dependent CDI), we investigated the contribution of the CICR-dependent CDI to action potential (AP) waveform and the amount of Ca2+-influx through Ca2+ channels during AP in rat ventricular myocytes. The elimination of the CICR-dependent CDI, by depletion of the SR Ca2+ with thapsigargin, significantly prolonged AP duration (APD). APD changed in parallel with the magnitude of CICR during the recovery of the SR Ca2+ content after transient depletion by caffeine. Such CICR-dependent change of APD persisted under the highly Ca2+ buffered condition where the Ca2+ signalling was restricted to nanoscale domains. Blockers of the Ca2+-dependent Cl− channel or the BK channel did not affect AP waveform. The amount of Ca2+-influx through Ca2+ channels during the SR-depleted type AP waveform, measured in the SR-depleted myocyte, was increased by 40% over that during the SR-intact type AP waveform measured in the SR-intact myocyte. The protein kinase A stimulation further enhanced the Ca2+-influx during AP under the SR-depleted condition to 70% of that under the SR-intact condition. These results indicate that the CICR-dependent CDI of L-type Ca2+ channels, under control of the privileged cross-signalling between L-type Ca2+ channels and RyRs, play important roles for monitoring and tuning the SR Ca2+ content via changes of AP waveform and the amount of Ca2+-influx during AP in ventricular myocytes
    corecore