10,883 research outputs found
Anisotropic Diamagnetic Response in Type-II Superconductors with Gap and Fermi-Surface Anisotropies
Effects of anisotropic gap structures on a diamagnetic response are
investigated in order to demonstrate that the field-angle-resolved
magnetization () measurement can be used as a spectroscopic method
to detect gap structures. Our microscopic calculation based on the
quasiclassical Eilenberger formalism reveals that in a
superconductor with four-fold gap displays a four-fold oscillation reflecting
the gap and Fermi surface anisotropies, and the sign of this oscillation
changes at a field between and . As a prototype of
unconventional superconductors, magnetization data for borocarbides are also
discussed.Comment: 5 pages, 4 figure
Phenomenological Analysis of and Elastic Scattering Data in the Impact Parameter Space
We use an almost model-independent analytical parameterization for and
elastic scattering data to analyze the eikonal, profile, and
inelastic overlap functions in the impact parameter space. Error propagation in
the fit parameters allows estimations of uncertainty regions, improving the
geometrical description of the hadron-hadron interaction. Several predictions
are shown and, in particular, the prediction for inelastic overlap
function at TeV shows the saturation of the Froissart-Martin
bound at LHC energies.Comment: 15 pages, 16 figure
Real-time analysis keratometer
A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis
Temperature dependence of the band gap shrinkage due to electron-phonon interaction in undoped n-type GaN
The photoluminescence spectra of band-edge transitions in GaN is studied as a
function of temperature. The parameters that describe the temperature
dependence red-shift of the band-edge transition energy and the broadening of
emission line are evaluated using different models. We find that the
semi-empirical relation based on phonon-dispersion related spectral function
leads to excellent fit to the experimental data. The exciton-phonon coupling
constants are determined from the analysis of linewidth broadening
Quantum site percolation on amenable graphs
We consider the quantum site percolation model on graphs with an amenable
group action. It consists of a random family of Hamiltonians. Basic spectral
properties of these operators are derived: non-randomness of the spectrum and
its components, existence of an self-averaging integrated density of states and
an associated trace-formula.Comment: 10 pages, LaTeX 2e, to appear in "Applied Mathematics and Scientific
Computing", Brijuni, June 23-27, 2003. by Kluwer publisher
Linear-response theory of the longitudinal spin Seebeck effect
We theoretically investigate the longitudinal spin Seebeck effect, in which
the spin current is injected from a ferromagnet into an attached nonmagnetic
metal in a direction parallel to the temperature gradient. Using the fact that
the phonon heat current flows intensely into the attached nonmagnetic metal in
this particular configuration, we show that the sign of the spin injection
signal in the longitudinal spin Seebeck effect can be opposite to that in the
conventional transverse spin Seebeck effect when the electron-phonon
interaction in the nonmagnetic metal is sufficiently large. Our linear-response
approach can explain the sign reversal of the spin injection signal recently
observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.),
typos correcte
Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals
Formation of ultrafine ferrite by dynamic strain-induced transformation
In the current study, the role of dynamic strain induced transformation on ferrite grain refinement was investigated using different thermomechanical processing routes. A Ni-30Fe austenitic model alloy was also employed to study the evolution of the deformation structure under different deformation conditions. It was shown that the extreme refinement of ferrite is more likely due to the formation of extensive high angle intragranular defects in the austenite through deformation. Among the different thermomechanical parameters, the deformation temperature had a significant effect on the intragranular defect characteristics. There was a transition where the cell dislocation structure changed to laminar microband structures with a decrease in the deformation temperature. Moreover, the ultrafine grained structure was also successfully produced through static transformation using warm deformation process; in other words, concurrent deformation and transformation are not necessary for ultrafine ferrite formation.<br /
- …