8,156 research outputs found
Linear-response theory of the longitudinal spin Seebeck effect
We theoretically investigate the longitudinal spin Seebeck effect, in which
the spin current is injected from a ferromagnet into an attached nonmagnetic
metal in a direction parallel to the temperature gradient. Using the fact that
the phonon heat current flows intensely into the attached nonmagnetic metal in
this particular configuration, we show that the sign of the spin injection
signal in the longitudinal spin Seebeck effect can be opposite to that in the
conventional transverse spin Seebeck effect when the electron-phonon
interaction in the nonmagnetic metal is sufficiently large. Our linear-response
approach can explain the sign reversal of the spin injection signal recently
observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.),
typos correcte
A possible minimal gauge-Higgs unification
A possible minimal model of the gauge-Higgs unification based on the higher
dimensional spacetime M^4 X (S^1/Z_2) and the bulk gauge symmetry SU(3)_C X
SU(3)_W X U(1)_X is constructed in some details. We argue that the Weinberg
angle and the electromagnetic current can be correctly identified if one
introduces the extra U(1)_X above and a bulk scalar triplet. The VEV of this
scalar as well as the orbifold boundary conditions will break the bulk gauge
symmetry down to that of the standard model. A new neutral zero-mode gauge
boson Z' exists that gains mass via this VEV. We propose a simple fermion
content that is free from all the anomalies when the extra brane-localized
chiral fermions are taken into account as well. The issues on recovering a
standard model chiral-fermion spectrum with the masses and flavor mixing are
also discussed, where we need to introduce the two other brane scalars which
also contribute to the Z' mass in the similar way as the scalar triplet. The
neutrinos can get small masses via a type I seesaw mechanism. In this model,
the mass of the Z' boson and the compactification scale are very constrained as
respectively given in the ranges: 2.7 TeV < m_Z' < 13.6 TeV and 40 TeV < 1/R <
200 TeV.Comment: 20 pages, revised versio
Quantum site percolation on amenable graphs
We consider the quantum site percolation model on graphs with an amenable
group action. It consists of a random family of Hamiltonians. Basic spectral
properties of these operators are derived: non-randomness of the spectrum and
its components, existence of an self-averaging integrated density of states and
an associated trace-formula.Comment: 10 pages, LaTeX 2e, to appear in "Applied Mathematics and Scientific
Computing", Brijuni, June 23-27, 2003. by Kluwer publisher
Change of the Ground State upon Hole Doping Unveiled by Ni Impurity in High- Cuprates
The electronic ground state in high- cuprates where the
superconducting state is suppressed by Ni substitution has been investigated in
LaSrCuNiO from the specific heat and muon spin
relaxation measurements. It has been found that the ground state changes from a
magnetically ordered state with the strong hole-trapping by Ni to a metallic
state with the Kondo effect of Ni with increasing hole-concentration. Moreover,
the analysis of the results has revealed that a phase separation into the
magnetically ordered phase and the metallic phase occurs around the boundary of
two phases.Comment: 11pages, 4 figure
Enhancement of electronic anomalies in iron-substituted La_2-x_Sr_x_Cu_1-y_Fe_y_O_4_ around x=0.22
We have measured the temperature dependences of Rho and Chi for
Fe-substituted La_2-x_Sr_x_Cu_1-y_Fe_y_O_4_ in the overdoped regime, in order
to investigate Fe-substitution effects on electronic properties around x=0.22.
From the Rho measurements, it has been found around x=0.22 that the values of
Rho are large at room temperature and that Rho exhibits a pronounced upturn at
low temperatures. Moreover, from the Rho and Chi measurements, it has been
found that T_c_ is anomalously depressed around x=0.22. These results indicate
that the electronic anomalies around x=0.22 are enhanced by Fe substitution,
which might be related to the development of stripe correlations by Fe
substitution.Comment: 7 pages, 3 figure
Calculation of pure dephasing for excitons in quantum dots
Pure dephasing of an exciton in a small quantum dot by optical and acoustic
phonons is calculated using the ``independent boson model''. Considering the
case of zero temperature the dephasing is shown to be only partial which
manifests itself in the polarization decaying to a finite value. Typical
dephasing times can be assigned even though the spectra exhibits strongly
non-Lorentzian line shapes. We show that the dephasing from LO phonon
scattering, occurs on a much larger time scale than that of dephasing due to
acoustic phonons which for low temperatures are also a more efficient dephasing
mechanism. The typical dephasing time is shown to strongly depend on the
quantum dot size whereas the electron phonon ``coupling strength'' and external
electric fields tend mostly to effect the residual coherence. The relevance of
the dephasing times for current quantum information processing implementation
schemes in quantum dots is discussed
Boosting up quantum key distribution by learning statistics of practical single photon sources
We propose a simple quantum-key-distribution (QKD) scheme for practical
single photon sources (SPSs), which works even with a moderate suppression of
the second-order correlation of the source. The scheme utilizes a
passive preparation of a decoy state by monitoring a fraction of the signal via
an additional beam splitter and a detector at the sender's side to monitor
photon number splitting attacks. We show that the achievable distance increases
with the precision with which the sub-Poissonian tendency is confirmed in
higher photon number distribution of the source, rather than with actual
suppression of the multi-photon emission events. We present an example of the
secure key generation rate in the case of a poor SPS with , in
which no secure key is produced with the conventional QKD scheme, and show that
learning the photon-number distribution up to several numbers is sufficient for
achieving almost the same achievable distance as that of an ideal SPS.Comment: 11 pages, 3 figures; published version in New J. Phy
- …